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Direct experimental access to microscopic dynamics in liquid hydrogen

M. Celli, D. Colognesi, and M. Zoppi
Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata ‘‘Nello Carrara,’’ Via Panciatichi 56/30, 50127 Firenze, Italy

~Received 12 March 2002; published 12 August 2002!

We have obtained the double-differential incoherent neutron scattering cross section of liquid and solid
parahydrogen in various thermodynamic conditions using TOSCA, a time-of-flight, inverse geometry, crystal
analyzer spectrometer, operating at the pulsed neutron source ISIS. The measured cross section provides direct
experimental access to the self part of the center-of-mass inelastic structure factor of the parahydrogen mol-
ecules in the system. Data have been corrected for the experimental effects and then analyzed in the framework
of the Young-Koppel model and the Gaussian approximation. The velocity autocorrelation functions and their
energy spectra have been obtained from a fitting procedure, making use of the quantum generalized Langevin
equation and of model memory functions, and finally compared to the most recent results of both molecular
centroid dynamics and self-consistent quantum mode-coupling theory. Some dynamic quantities were also
related to simple equilibrium properties and simulated through a standard path integral Monte Carlo code.
Results are very interesting but still urge for further developments of theoretical and dynamic simulation
approaches, as well as for more extensive experimental efforts.

DOI: 10.1103/PhysRevE.66.021202 PACS number~s!: 61.20.2p, 61.12.Ex, 64.70.Dv
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I. INTRODUCTION

In the recent years the microscopic dynamics of sim
liquids has attracted many researchers with the conseq
production of a large literature@1#. As far as classical simple
liquids are concerned, this massive work has generate
wealth of experimental data that can be satisfactory in
preted within a well established theoretical framework@2#. In
addition, in those cases where a purely theoretical appro
becomes insufficient, one can rely on numerical meth
~e.g., molecular dynamics computer simulation!, which al-
low to obtain any time-dependent correlation function tha
experimentally accessible@3#. On the other hand, for quan
tum and semiclassical liquids the situation is far less sa
factory: only approximate methods can be used and, w
quantum effects begin to play a crucial role, a full theoreti
calculation of the spectral features becomes quite difficul
not totally impossible. It means that a rigorous description
the quantum dynamics in a simple fluid~especially forT
.0) at the microscopic level is still an open problem in t
physics of disordered systems. So far, no fully satisfact
theoretical approach has been proved to give a complete
precise description of the dynamics of a quantum liquid, a
even computer simulation has not reached the necessar
curacy that is needed in order to give quantitatively acce
able predictions of the relevant dynamic quantities, with
only possible exception of ground-state superfluid4He @4#.

On the experimental side, the inelastic neutron scatte
technique@5# seems to have gained a prominent role a
source of reliable information on the dynamics of simp
liquids @6#. As a matter of fact, the double-differential ne
tron scattering cross section, which was originally derived
Van Hove@7#, is truly quantal. This has allowed an extensi
experimental work on the dynamic properties of the heli
liquids @8#. However, intrinsic experimental difficulties hav
prevented, so far, a complete experimental exploration of
dynamic properties of other simple quantum liquids~e.g., the
hydrogens!. Nowadays this field is becoming more and mo
1063-651X/2002/66~2!/021202~14!/$20.00 66 0212
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accessible with the development of the last generation n
tron sources and of novel instrumentation@9#.

If we consider liquid4He, the idea goes immediately t
its superfluid properties. This is a very peculiar case, wh
the structural and dynamical properties of the liquid a
heavily affected by its quantum~Bose-Einstein! statistics.
However, there are important cases where the exchang
particles does not play an appreciable role, but the struc
and dynamics are still largely determined by the quant
delocalization properties@10#. This is the case of the norma
phase of liquid4He, liquid 3He at T.TF(TF is the Fermi
temperature! and of the liquid hydrogens (H2 , D2, and T2).
Liquid Ne exhibits visible quantum features too. However,
this case, the quantum effects are sufficiently small tha
perturbative theoretical approach~e.g., the Wigner-Kirkwood
expansion@11#! is usually sufficiently accurate to describ
the observed structural and dynamic characteristics. T
when quantum effects play a relevant role, we can broa
distinguish between two main categories of liquids, as s
gested for the first time by Dyugaev@10#: on one side we
have liquid systems where the exchange of particles is
evant and Bose-Einstein~superfluid 4He) or Fermi-Dirac
~cold liquid 3He at T,TF) statistics should be applied; o
the other side we have liquids, like the hydrogens, where
exchange is negligible~and the Boltzmann statistics satisfa
torily applies!, but the quantum delocalization effects are s
relevant. In the latter case microscopic features are affe
by quantum mechanical effects in a way that cannot be s
ply dealt with through a perturbative approach.

In recent years computer simulation has been of gr
help in interpreting the features of the liquid state at t
microscopic level. As far as static properties are concern
Monte Carlo~MC! methods@3,12# are routinely used to pre
dict the microscopic structure of liquids, once a suitable
teraction potential is provided@13#. In turn, dynamic features
can be evaluated using the molecular dynamics techn
@14–17#. Unfortunately, these two simulation procedures a
ply to classical liquids only. When quantum fluids are i
©2002 The American Physical Society02-1
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volved, both simulation methods break down. However,
far as the static structure is concerned, the path inte
Monte Carlo~PIMC! simulation technique has been deve
oped@18–20#, allowing to determine the microscopic equ
librium properties of quantum liquids and solids, even at
level of the superfluid phase of4He @21,22#. The PIMC
simulation technique is based on a factorization of the d
sity matrix @23,24#: the quantum system is replaced by
system of classical ring polymers, which may be simula
using classical MC. Each ring polymer consists ofP copies
of the quantum particle (P being the Trotter number@25#!
and exact quantum mechanical results are obtained in
limit P→`. It is important to point out that a rigorous iso
morphism between the quantum system and the set of c
sical ring polymers has been established and explained
Chandler and Wolynes@26#. On the contrary, the state of th
art of the simulation techniques dealing with the dynamics
quantum liquids is not yet established on a firm and rigor
basis, even though some very interesting results have be
to appear in the literature@27–33#, especially from the so-
called path integral centroid molecular dynamics approa
In this context we should also distinguish among the vari
ranges of magnitude of the momentum transfer,\k. In the
very low k region, where the hydrodynamic approximatio
can be still applied, the dynamic behavior of a quantum s
tem is generally understood~at least at a semiquantitativ
level! and only quantitative refinements are necessary@34#.
At the other end of thek scale, when the impulse approx
mation ~IA ! applies, the dynamic behavior of quantum li
uids is also well described: the energy (\v) and momentum
transfers are so large that the interparticle interactions du
the scattering process can be almost neglected, or accou
for by using small final state effect corrections@8#. In this
case, the only important microscopic features that determ
the neutron scattering law are the molecule recoil energy
the single-particle momentum distribution of molecular ce
ters of mass@35#. In the IA the most prominent effect of th
interactions resides, before the scattering process, in a q
tum renormalization of the translational kinetic energy wh
~at low temperature! becomes strongly density depende
@36,37#. Thus the dynamic problem is virtually solved in th
two extreme scenarios: where the quantum system ca
considered either as a uniform continuous~very low values
of k, as the ones probed by optical spectroscopy! or as a set
of almost freely recoiling particles~very high values ofk and
v, as in deep inelastic neutron scattering!.

It is in the region of intermediatek that the dynamical
problem is still partially unsolved from the theoretical poi
of view, at least as far as quantum and semiquantum flu
are concerned. This is the range ofk where the static struc
ture factorS(k) shows its main features and the microsco
quantum dynamics of the system is heavily determined
the interaction of each molecule with its neighbors. Prelim
nary attempts to shed some light on this topic have b
historically carried out by Vineyard@38#, who introduced
some important approximations in the theoretical evalua
of the dynamic structure factorS(k,v). The theory has been
later developed, in the framework of the well-know
fluctuation-dissipation theorem, by Rahman, Singwi, a
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Sjölander in an important work appeared in 1962@39#, and
further extensions and approximations have been su
quently proposed by Nelkin and Ghatak@40#, Zwanzig@41#,
and Sears@42#. More recently, a self-consistent quantu
mode-coupling~QMC! theory has been suggested by Rab
and Reichman@43# and applied to the case of liquid parah
drogen. This model starts from a definition of anexactquan-
tum generalized Langevin equation which follows from t
historical works of Zwanzig@44#, Mori @45,46#, and Kubo
@47#. Using static structural information from PIMC simula
tions, a simple quantum viscoelastic model~suggested by
Lovesey@48#!, and a pure exponential decay law for the tim
dependence of the memory function, the authors@43# have
been able to obtain a satisfactory result for the dynam
structure factor of liquid parahydrogen atT514 K. How-
ever, no direct quantitative comparison with the availa
experimental results@49,50# was provided@43#.

From the computational point of view, one could impl
ment a brute-force method, like the one invented to simu
the Newtonian dynamics of a large~but finite! number of
classical particles. However, in this case, one should sim
taneously solve the Schro¨dinger equation for all the mol-
ecules in the interaction field generated by their neighbo
Obviously this is an extremely hard task, even taking in
account the present capability of the fastest supercompu
Alternatively, one has to rely on approximate simulati
methods that are appearing in literature and look quite pro
ising for evaluating the dynamic features of quantum s
tems @32#. Presently, the comparison with thedynamic
experimental results is fairly good, at least to a semiqua
tative level @50#. In this context, any precise experiment
dynamic information comparable to theoretical or simulati
predictions is extremely valuable.

In this paper, we present the results of an experiment
liquid parahydrogen that satisfies some of the above m
tioned requirements. On one side, the measured spectra
sults are sufficiently precise to allow a fine quantitative co
parison with the available theoretical and simulati
predictions. On the other hand, the span of momentum tra
fer is considerably larger than the extent to which hydrod
namics applies. Actually, the present experimental res
provide direct information on the single particle molecu
dynamics in rather interesting momentum and energy tra
fer ranges. The experimental scattering law, related to
self inelastic structure factorSsel f(k,v) extends from\v5
210 meV up to\v580 meV, while the momentum trans
fer, \k, monotonically grows from 3 Å21 to 8 Å21. Thus,
due to the relatively high value ofk, the purely diffusive
motion is not the main issue in our spectra and we exp
that only approximate information on the self-diffusion coe
ficient D will be worked out. However, owing to the ex
tended energy variation, we will be able to obtain reliab
information on other dynamic quantities, as well as on
time correlation functions of some selected observable
Sec. II we will recollect the relevant theoretical framewo
of our study and we will discuss the approximations used
the present work. The experiment will be described in S
III, and we will show how to determine directly the se
~incoherent! inelastic dynamic structure factor of liqui
2-2



w
c-
im
c
n

sti
s

t-

o
l

am

em

re

f

nt

e

in

ble
ec-

-
ly
tly,
er
-

of

s:

e

DIRECT EXPERIMENTAL ACCESS TO MICROSCOPIC . . . PHYSICAL REVIEW E66, 021202 ~2002!
parahydrogen from the experimental spectra. In Sec. IV
will explain how to obtain the velocity autocorrelation fun
tion and its spectral shape by using the Gaussian approx
tion for the intermediate scattering function. Finally, in Se
V, we will discuss the results and we will compare the qua
tities derived from the experimental spectra with their e
mates obtained from literature and from PIMC simulation

II. THEORETICAL FRAMEWORK

Following Van Hove@7#, we define the intermediate sca
tering function for the molecular centers of mass,F(k,t), as

F~k,t !5
1

N (
j ,l

^exp@2 ik•r j~0!#exp@ ik•r l~ t !#&, ~1!

where \k is the momentum transfer,r l(t) represents the
Heisenberg operator for the center-of-mass position of m
ecule l at time t, and ^•••& indicates a quantum statistica
average. As we are interested in the single molecule dyn
ics, we need only to deal with theself part of the intermedi-
ate scattering function, which is

Fsel f~k,t !5
1

N (
j

^exp@2 ik•r j~0!#exp@ ik•r j~ t !#&

5^exp@2 ik•r1~0!#exp@ ik•r1~ t !#&. ~2!

The calculation ofFsel f(k,t) is not a trivial task, especially
in a quantum liquid. However, Rahmanet al. @39# have
shown that it can be rigorously written in an isotropic syst
as

F~k,t !5expS i t
\k2

2M DexpF (
n51

`

~2k2!ngn~ t !G , ~3!

whereM is the molecular mass. The first exponential rep
sents the recoil energy term and the functionsgn(t) are ex-
pressed by means of the quantum statistical averages o
velocity operators. We note that Eq.~3! is rigorous, while
limiting the cumulant expansion to the first term represe
the well-known Gaussian approximation@38#. In this case,
all the dynamic information is contained ing1(t), given by

g1~ t !5E
0

t

dt1E
0

t1
dt2^vk~ t2!vk~ t1!&, ~4!

wherevk5(v•k)/k is the projection of the velocityv along
the k direction. Taking into account the translational tim
invariance of the quantum statistical average, Eq.~4! be-
comes

g1~ t !5E
0

t

dt1~ t2t1!^vk~0!vk~ t1!&. ~5!

This can be written, for an isotropic system, as

g1~ t !5
1

3E0

t

dt1~ t2t1!u~ t !, ~6!
02120
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which directly connects the functiong1(t) to the velocity
autocorrelation function~VACF! u(t) defined as

u~ t !5^v~0!•v~ t !&. ~7!

The next two terms in the cumulant expansion appearing
Eq. ~3!, i.e.,g2(t) andg3(t), are given explicitly by Rahman
et al. @39#. These functions are determined by the irreduci
correlation functions among four and six velocities, resp
tively.

Within the applicability limit of the Gaussian approxima
tion, the velocity correlation function determines unique
the self intermediate scattering function and, consequen
the self dynamic structure factor. Now we define the pow
spectrum of the VACF,J(v), by means of the Fourier trans
form

J~v!5
1

2pE2`

1`

dte2 ivtu~ t !. ~8!

In a quantum system, because of the intrinsic structure
u(t), some constraints apply to the power spectrumJ(v)
@5,51#. For example, from the propertyu(2t)5u!(t), it fol-
lows that J(v) is real, while from the propertyu(2t)
5u(t1 ib\), whereb51/(kBT) and kB is the Boltzmann
constant, the well-known detailed balance condition follow

J~2v!5exp~2b\v!J~v!. ~9!

If we split the power spectrumJ(v) in its symmetric and
antisymmetric components, i.e., we define

J~v!5JS~v!1JA~v!, ~10!

where

JS~v!5
1

2
@J~v!1J~2v!# ~11!

and

JA~v!5
1

2
@J~v!2J~2v!#, ~12!

it turns out that the symmetric componentJS(v) is given by
the real part ofu(t), while the imaginary part determines th
antisymmetric termJA(v),

JS~v!5
1

pE0

`

dt cos~vt !Re@u~ t !#, ~13!

JA~v!5
1

pE0

`

dt sin~vt !Im@u~ t !#. ~14!

Finally, using the detailed balance condition of Eq.~9!, it is
possible to relate the two spectra and to obtain

JA~v!5
12e2b\v

11e2b\v
JS~v!5tanh~b\v/2!JS~v!, ~15!
2-3
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which is one of the many possible ways of expressing
aforementioned fluctuation-dissipation theorem. We obse
that the two functions,f (v) andg(v), defined by Rahman
et al. @39# and related to the energy spectra of the imagin
and the real parts ofu(t), are simply connected to the ant
symmetric and symmetric components ofJ(v) through

JA~v!5
3\

4M
v f ~v!, ~16!

JS~v!5
3kBT

2M
g~v!. ~17!

From the zeroth moment ofJ(v) one writes

E
2`

1`

dvJ~v!52E
0

`

dvJS~v!5u~0!5
^Ek&
M /2

, ~18!

where^Ek& is the single particle mean kinetic energy and t
normalization condition forg(v) follows:

E
0

`

dvg~v!5
^Ek&

~3/2! kBT
. ~19!

It is worth noting that the mean kinetic energy in a quant
system differs from the classical expression~namely,^Ek

cl&
53/2kBT) and therefore the integral ofg(v) equals 1 only
in the classical limit. Finally, still following Rahmanet al.
@39#, it is easy to obtain the normalization condition for th
function f (v),

E
0

`

dv f ~v!51. ~20!

Now we have all the ingredients to compute, given the VA
or its energy spectrum, the self-dynamic structure factor,

Ssel f~k,v!5
1

2pE2`

1`

dte2 ivtFsel f~k,t !, ~21!

which becomes, within the Gaussian approximation@i.e., Eq.
~3! truncated at the first order#,

Ssel f~k,v!>
1

pE0

`

dt exp@2k2g1
R~ t !#cos@~v2v r !t

1k2g1
I ~ t !#, ~22!

wherev r5\k2/(2M ) is the recoil frequency andg1
R(t) and

g1
I (t) are the real and imaginary parts of the mean squ

displacement functiong1(t), respectively, as defined in Eq
~6!. These two mean square displacement functions are
ily obtained from the components of the spectrumJ(v),

g1
R~ t !5

2

3E0

`

dv
JS~v!

v2
@12cos~vt !#, ~23!
02120
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I ~ t !52

2

3E0

`

dv
JA~v!

v2
sin~vt !. ~24!

Within the applicability limit of the Gaussian approximatio
the single particle dynamic problem reduces to find a relia
model for the VACFu(t) @see Eq.~7!#. This is relatively
simple in classical liquids, where a memory function a
proach can help in solving the problem@2#. The situation
becomes more difficult in the quantum case whereu(t) is a
complex function. However, it has been shown@27# that this
difficulty can be circumvented taking advantage of the sy
metry properties of the Kubo transform of the VACF. Fo
lowing Kubo @52# we define acanonicalvelocity autocorre-
lation functionuc(t) according to the prescription

uc~ t !5
1

bE0

b

dl^elHv~0!e2lH
•v~ t !&, ~25!

whereH is the Hamiltonian of the system. Thiscanonical
VACF turns out to be even in time@52# and its Fourier trans-
form reads

Jc~v!5
1

2pE2`

1`

dte2 ivtuc~ t !. ~26!

This turns out to be simply related to thesymmetricand
antisymmetricspectra ofu(t) by

Jc~v!5
tanh~b\v/2!

~b\v/2!
JS~v!, ~27!

Jc~v!5
1

~b\v/2!
JA~v!. ~28!

Equations~25!, ~27!, and ~28! are also known as theKubo
transformsin time and frequency space, respectively.

III. EXPERIMENT DESCRIPTION

The neutron scattering experiment was carried out
TOSCA-I, a crystal-analyzer inverse-geometry spectrome
operating at the ISIS pulsed neutron source~Rutherford
Appleton Laboratory, Chilton, Didcot, UK! @53#. The inci-
dent neutron beam spanned a broad energy (Ei) range and
the energy selection was carried out on the secondary
tron flight path using the~002! Bragg reflection of ten graph
ite single crystals placed in backscattering around 136.
This fixed the nominal scattered neutron energy
.3.5 meV. Higher order Bragg reflections were filtered o
by 15 cm thick beryllium blocks cooled down to 30 K. Th
geometry allows to cover an extended energy transfer ra
even though the fixed position of the crystal analyzers a
the small value of the neutron final energy imply a variati
in k which is a monotonic function ofv. The resolv-
ing power of TOSCA-I was rather good (1.4%,D\v/Ei
,3.5%) in the energy transfer region relevant to the pres
experiment (4 meV,\v,114 meV). The extended spec
tral range of TOSCA makes this instrument a sort of neut
equivalent of a Raman optical spectrometer.
2-4
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Intramolecular transitions could be in principle easily o
served well beyond the first vibrational transition of molec
lar hydrogen~we remind that this is placed at 514.5 meV!.
However, it should be also pointed out that, due to the m
lecular recoil, the observed shifts are generally much gre
than those observed on a conventional Raman spectrom
The Raman spectrum of liquid hydrogen is characterized
strong intramolecular transitions~rotations and vibrations!.
However, on the Stokes~energy-loss! side of each intramo-
lecular line, a side phonon band of intermolecular origin
visible @54# and originates from the same mechanism t
produces the broad quasielastic band that is attributed to
lective multiphonon excitations. Similar concepts can be
plied to the neutron scattering spectrum from liquid h
drogen. Here the fundamental difference between the qu
elastic~no intramolecular excitation is involved! and the in-
elastic~one or more intramolecular excitations are involve!
contributions is due to the different weight of the self a
distinct translational components. Actually in the quasiela
spectrum, the Van Hove@7# formulation applies and the con
tribution to the neutron double-differential cross section i
mixing of the two components~self and distinct!, as in any
monatomic liquid. However, due to the lack of correlati
among the phase factors in the intramolecular transitions
taining to different molecules, only the self term builds
and contributes to the inelastic neutron spectrum.

Thus, TOSCA can be considered even more as the neu
equivalent of an optical Raman spectrometer, the only dif
ence being the momentum transfer monotonically grow
along with the energy shift:kv→`→(2mnv/\)1/2, wheremn
is the neutron mass. In the high-energy region of the sp
trum the momentum transfer grows to such an extent that
scattering process is expected to enter the IA regime. Th
fore, the spectrum carries information relative to the mom
tum distribution of the centers of mass@55#. On the other
hand, in the low energy spectral region, the size of the m
mentum transfer is of the order of the reciprocal of the int
molecular distances between neighbors. In this case the
contribution to the scattering function is expected to prov
information on the dynamics, mainly driven by the pair i
teractions. Even though the transition between these two
gimes is not clearly defined, it is sensible to assume@2# that
it lies beyond the first peak of the intermolecular static str
ture factorS(k) ~which is located aroundk52 Å21) in the
region where S(k) becomes .1 ~i.e., k.6 –8 Å21).
Should the momentum transfer decrease to much lower
ues, to such an extent that the hydrodynamic regime wo
drive the microscopic dynamics, it would be possible to g
direct information on the long-time behavior of the VAC
and the self-diffusion coefficient@6#. Unfortunately, this is
not the case of TOSCA and only an approximate estimat
the diffusive dynamics is expected to come out from
present hydrogen spectra.

If pure liquid parahydrogen is considered, the inelas
neutron spectrum becomes rather simple~see Fig. 1!. Due to
the low experimental temperature (T514–21 K) only the
fundamental rotational state (J50) is populated. In addition
since the transitions to the even states (J50→J8
52,4,6, . . . ) areweighted by the small hydrogen cohere
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cross-section (sc51.8 b), their intensity is almost two or
ders of magnitude smaller than the transitions to the o
states~driven by the incoherent one,s i580 b) @5#. Thus the
observed spectrum reduces, for any practical purpose,
set of odd rotational transitions (J50→J851,3,5, . . . ).
Due to the small moment of inertia of hydrogen, rotation
transitions are all well separated (J50→J851 implies an
energy jump of 14.7 meV, whileJ50→J853 corresponds
to a jump of 88.2 meV!. As a consequence, taking into a
count the extra shift induced by the molecular recoil~see Fig.
2!, the overlap of different bands is small and each band
be separately analyzed. The high-energy region of the s
tra, involving the rotational transitions beyond the first e
cited rotational level, (J50→J853,5,7) has been alread
analyzed in the framework of the IA regime@55# ~as shown

FIG. 1. Raw experimental inelastic neutron spectrum~after can
subtraction! measured on liquid parahydrogen atT517.2 K and
p50.43 bar. Each peak represents a rotational transition sta
from the ground levelJ50. The transition to the even levels ar
weighted by the small H coherent cross section, therefore only
transitions to the odd levelsJ851,3,5,7 are visible.

FIG. 2. Recoil energies,Er , as a function of the square of th
momentum transfer from the spectrum of liquid parahydrogen
T514.3 K. The slope of the linear fit~dashed line! is proportional
to the inverse of the recoil mass@55# which turns out to beM
5(1.9960.01) amu. This demonstrates that we observe the wh
molecule recoil.
2-5



n
on
of

o
o

el
ns
a

n
e-

he
-

u

la
hy
u

nt

e

d

ig
-

pty

his

and

was
g
t

he
ag-

hy-
as

lar,
e

ea-

ess
tra-

tion
ding
t of

y,
ple,

t the
ta-

ri-
ex-
ame

ur

ell.

in

ui
d

s
ul
ibu

id
dro-
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in Fig. 3!. In this case, due to the high value of the mome
tum and energy transfers, the intermolecular interacti
only give rise to a simple renormalization of the center-
mass mean kinetic energy. This, in turn, affects the width
the molecular recoil peak which describes the free motion
the molecule. A simple modification of the Young-Kopp
theory@56# can be applied and we could determine the tra
lational mean kinetic energy in liquid and solid hydrogen
a function of the thermodynamic conditions@55#.

If we focus our attention on the first rotational transitio
(J50→J851) of molecular parahydrogen, the doubl
differential cross section is given by@57#

d2s

dVdv
5

k1

k0

s i

4p
u f ~k!u0→1

2 Ssel f~k,v! ^ d~v2v0→1!,

~29!

where f (k) is the intramolecular form factor andSsel f(k,v)
is the dynamic structure factor for the self motion of t
molecular center of mass. The symbol^ represents an en
ergy convolution andd is the Dirac delta function. In this
case the value of the momentum transfer is not large eno
(k,8 Å21) to justify the use of the IA andSsel f(k,v) car-
ries much information on the effects of the intermolecu
interactions on the single particle dynamics of molecular
drogen. In order to establish a comparison with vario
simulations and theoretical models, due to the instrume
characteristics of TOSCA, the cross section in Eq.~29!
should be evaluated along the kinematic path of the sp
trometer, provided a suitable model is given forSsel f(k,v).

The measurement was carried out at seven thermo
namic points. Five were selected in the liquid phase~see
Table I! and two in the solid one~see Ref.@55# for the de-
scription of the solid phase measurements and the h
energy data analysis!. After performing the background mea

FIG. 3. Experimental inelastic spectrum measured on liq
parahydrogen atT514.3 K after subtracting can contribution an
multiple scattering. TheJ50→J851 transition is not reported in
the picture because in this case the impulse approximation doe
apply. The line represents the best fit to the data using the imp
approximation and a Gaussian function for the momentum distr
tion. From the fit we could extract@55# the center-of-mass~transla-
tional! mean kinetic energy,̂Ek&.
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surements of the empty cryostat, we cooled the em
container at the desired temperature (T517.2 K) and we
measured its time-of-flight~TOF! neutron spectrum. Then
hydrogen was allowed to condense in the scattering cell. T
was made of aluminum~1.0 mm thick walls! with a circular-
slab geometry. The sample thickness was also 1.0 mm
the cell diameter~50.0 mm! was slightly larger that the beam
cross section. The pressure of the gas handling system
set to p50.43 bar @slightly larger than the correspondin
saturated vapor pressure~SVP!# in order to make sure tha
the cell was filled with liquid~the SVP atT517.2 K is 0.36
bar!. At the bottom of the scattering container, out of t
neutron beam, we had inserted some powder of a param
netic catalyst made of Cr2O3 on an Al2O3 substrate in order
to speed up the conversion from orthohydrogen to para
drogen. The relative concentration of the two species w
monitored looking at the scattering spectrum. In particu
we could observe the progressive disappearance of thJ
51→J851 ~quasielastic line! transition, which is weighted
by the incoherent cross-section of the proton@58#, from the
low energy portion of the spectrum. When this spectral f
ture was below the limit of detectability~in practice, masked
by the J50→J850 transition, which is weighted by the
coherent cross section of the proton! we assumed that the
equilibrium had been reached. The equilibration proc
took, in our case, about 20–25 h. The estimated concen
tion of parahydrogen, based on the theoretical calcula
@59#, was assumed to be 99.96%. Then we started recor
the scattering spectrum up to an integrated proton curren
2271 mA h ~roughly, 12 h of beam time!.

The following spectra were collected in a similar wa
after changing the temperature and pressure of the sam
and performing some short test spectra, to make sure tha
sample was already at the equilibrium composition. The s
bility of the thermodynamic conditions during the expe
ment was very good. Temperature fluctuations never
ceeded 0.1 K and pressure fluctuations were of the s
order of magnitude of the pressure gauge sensitivity~i.e.,
0.01 bar!. The temperature uncertainty estimated for o
measurements~see Table I!, i.e., 0.2 K, was mainly due to a
tiny gradient across the vertical dimension of the sample c
The densities of our samples~and their uncertainties! were
later derived according to Ref.@59#. The full set of param-
eters characterizing the present experiment is reported
Table I. In Fig. 4~a! we show the raw spectrum of liquid
parahydrogen atT514.3 K andn522.91 nm23 in the re-

d

not
se
-

TABLE I. Thermodynamic conditions of the measured liqu
hydrogen samples, including the theoretically calculated parahy
gen percentage@p-H2# and integrated proton currentIC. The triple
point temperature isTTP513.803 K.

T (K) n (nm23) p (bar) @p-H2# (%) IC (mA h)

14.3~2! 22.91~6! 0.16~1! 99.99 2368
15.7~2! 22.52~6! 0.24~1! 99.98 1917
17.2~2! 22.10~6! 0.43~1! 99.96 2271
19.2~2! 21.50~6! 0.82~1! 99.88 2310
21.2~2! 20.83~9! 1.34~1! 99.71 1344
2-6
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gion of the first rotational transition (J50→J851). As a
comparison the lower part, Fig. 4~b!, shows the equivalen
spectrum for the solid sample@55# at T512.2 K and n
526.02 nm23. In the liquid phase, the rotational line (J
50→J851) is broadened and shifted by a combinati
with the diffusive motion and the intermolecular excitatio
@60#, while in the solid phase spectrum, a relevant fraction
the hydrogen molecules transfers the recoil to the whole
tice and an extremely sharp rotational line appears in
unshifted position of 14.42~3! meV.

IV. DATA ANALYSIS

The experimental TOF spectra were transformed into
ergy transfer data, detector by detector, making use of
standard TOSCA-I routines available on the spectrome
and then added together exploiting the narrow angular ra
spanned by the whole set of detectors (Du59.5 °) @53#. In
this way, we produced a single double-differential cro
section measurement along the TOSCA-I kinematic p
@k(v),v# for each thermodynamic condition of Table
Then, data were corrected for thek1 /k0 factor and subtracted
of the tiny empty can contribution, separately recorded aT
517.2 K ~with an integrated proton current of 749mA h).
Two fundamental corrections were carefully performed:mul-
tiple scatteringevaluation andself-absorptionattenuation.
As far as the former is concerned, we simulated both sin
scattering and multiple-scattering neutron spectra meas
by TOSCA-I for each sample through the analytical a
proach suggested by Agrawal in the case of an infinite
slablike sample@61#. The main inputs of this procedure we
the self inelastic structure factors of the samples to be m
sured in a wide region of the (k,v) plane. These functions
were simulated through the Gaussian approximation~already
described in Sec. II and in Ref.@39#! using a model spectra
function f (v) @see Eq.~16!#. This simple heuristic mode

FIG. 4. ~a! Raw experimental inelastic spectrum measured
liquid parahydrogen atT514.3 K ~after can subtraction! zoomed
in the low-energy zone (\v,100 meV). ~b! Raw experimental
inelastic spectrum measured on solid parahydrogen@55# at T
512.2 K andn526.02 nm23 ~after can subtraction! zoomed in
the same low-energy zone. The unrecoiledJ50→J851 transition
is evident at\v514.42(3) meV.
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was already positively tested by the authors@62# for liquid
parahydrogen in a large energy range. It assumes a Gau
shape forf (v), fixing its three parameters~amplitude, mean,
and standard deviation! by imposing the overall normaliza
tion @see Eq.~20!# in the positivev region, the value of the
translational mean kinetic energy@39# and the self-diffusion
coefficient@39#. The mean kinetic energy was obtained fro
Ref. @55# while the self-diffusion coefficient was derive
from the experimental data of Ref.@63#.

The two simulated spectra~single and multiple! were
added together in the 4 meV,\v,80 meV interval of
TOSCA-I. Then the unknown instrumental constant w
worked out and all the experimental data were subtracte
their respective multiple scattering contributions. An e
ample of this procedure is shown in Fig. 5, where the agr
ment between experimental and simulated data atT
521.2 K is appreciable, considering the extreme simplic
of the model forf (v). The only visible disagreement is i
the low-energy region (10 meV,\v,25 meV) where,
however, the multiple scattering contribution appears to
negligible. As we will see in the following section, a mo
elaborated model forf (v) can largely improve the agree
ment between experimental and simulated data.

Following this stage, self-absorption correction was a
plied to the normalized single-scattering experimental da
still assuming the infinite slab approximation and making u
of the aforementioned analytical approach@61#. However, in
this case, no model was employed for the parahydrogen t
scattering cross section, which, on the contrary, was obta
from the experimental results of direct measurements
the SVP liquidp-H2 at T516.0(2) K @64#. At the end of
the correction procedure, the processed data, limited to
4 meV,\v,80 meV interval, were corrected for the ro
tational dynamics. Since, in this energy region, theJ50
→J853,5,7 transitions are negligible, the spectrum was
vided by the intramolecular form factor for theJ50→J8
51 transition@56# j 1

2(kd/2), whered is the mean interatomic

n
FIG. 5. Inelastic spectrum measured on liquid parahydroge

T521.2 K in the energy region of theJ50→J851 transition
~circles!. Experimental data are compared to the simulated sin
scattering~dashed line! and multiple-scattering~dot-dashed line!
spectra and their sum~solid line!. The multiple-scattering contribu
tion is subsequently subtracted from the data.
2-7
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M. CELLI, D. COLOGNESI, AND M. ZOPPI PHYSICAL REVIEW E66, 021202 ~2002!
distance in H2 and j 1(x) the spherical Bessel function of th
first order. Then, an energy shift ofE021514.42 meV, i.e.,
the pureJ50→J851 transition energy derived from th
present solid parahydrogen measurements, was applied t
move the effect of thed function in Eq.~29!.

From Eq.~29! and the knowledge ofk(v), we could ex-
tract theSsel f„k(v),v…, i.e., the projection of the incoheren
dynamic structure factor of condensed hydrogen on the k
matic path of TOSCA@53#. In order to compare the exper
mental data with the results of the calculations, we rely
the Gaussian approximation@39#. This is known to be rigor-
ous in a harmonic solid but becomes less accurate in the
of a liquid, even in the classical case@2#. In particular, the
approximation is known to be good in the lowk region,
where the dynamics is mainly driven by the hydrodynam
diffusive modes, and in the very highk region, where the IA
for the dynamics of the molecular centers of mass can
applied. Actually, in this latter case, the Gaussian approxim
tion becomes rigorous, also for the liquid state, provided
momentum distribution of a particle in the fluid,n(p), is
Gaussian. This is generally the case, even for a quantum
@65#, unless one is dealing either with liquid4He close to or
below the lambda transition, or with liquid3He atT,Tf .

In the case of liquid parahydrogen, Reichman and Rab
@66# used a self-consistent quantum mode-coupling theor
derive, in the framework of the Kubo formalism and of th
Gaussian approximation, a VACF for the dynamics of t
molecular centers of mass, which is claimed to be relia
On the other hand, recent quantum mechanical dyna
simulations~MCD! by Kinugawa@32#, still carried out for
the case of liquid parahydrogen, give also information on
same quantity, namely, the VACF. In this case, using
Gaussian approximation, we were able to obtain, in a p
liminary work @62#, a quite good agreement with the prese
experimental results atT514.3 K ~see Table I!. Therefore in
what follows we will assume the Gaussian approximation
be valid and, through it, we will try to extract all possib
dynamic information from our experimental data on liqu
parahydrogen measured on TOSCA. In practice, we
compare the experimental spectra taken on TOSCA~and pro-
cessed as explained before! in order to obtain the experimen
tal Ssel f„k(v),v…, with a theoretical model for the VACF
using the Gaussian approximation expressed by Eq.~22!. We
stress that the reason for the following detailed quantita
analysis is due to the good statistical accuracy of the pre
experimental spectra. However, we point out again that th
are collected at constant scattering angle and therefok
changes withv.

The basic ingredient of this comparison is in the definiti
of thecanonicalVACF according to the Kubo definition@see
Eq. ~25!#. Thus we define a normalized~time-symmetric!
function C(t) as

C~ t !5
uc~ t !

uc~0!
. ~30!

Using the results of the Kubo theory, it is easy to show t
uc(0)5(3kBT)/M and therefore,
02120
re-

e-

n

se

c

e
a-
e

id

ni
to

e
.
ic

e
e
-

t

o

ll

e
nt
se

t

uc~ t !5
3kBT

M
C~ t !. ~31!

The normalized correlation functionC(t) is then assumed to
obey a generalized Langevin equation~see Reichman and
Rabani@66#!, that is,

Ċ~ t !52E
0

t

dt1Kc~ t1!C~ t2t1!, ~32!

where the dot means a time derivative andKc(t) is the
memory function of the canonical VACF. The solution to E
~32! is easily obtained using the Laplace transform form
ism. Actually, taking advantage of the time symmetry
C(t) and defining the tworeal spectral functions,

A~v!5E
0

`

dt cos~vt !Kc~ t !, ~33!

B~v!52E
0

`

dt sin~vt !Kc~ t !, ~34!

we obtain the following expression forC̄(v), the Fourier
transform~FT! of C(t):

C̄~v!5
1

p

A~v!

A2~v!1@v1B~v!#2
. ~35!

From the FT of Eq.~31!, using also Eq.~26!, we finally
arrive at an expression forJc(v) and, from this, to a numeri-
cal evaluation ofJA(v) and JS(v) @see Eqs.~27! and fol-
lowing#. These functions, in turn, can be used as input in
~23! to obtain thereal and imaginary parts of the squared
displacement functiong1(t). From these, making use of Eq
~22! and following, we obtain a numerical evaluation of th
Ssel f„k(v),v…. This quantity can be compared with the e
perimental spectra.

In modeling the canonical memory functionKc(t), we
will begin considering the pair dynamics only. This is su
gested by the relatively large values of the momentum tra
fer accessed by our experiment and, for the same reason
do not expect our results to be much sensitive to the mo
coupling component of the canonical memory function. A
first attempt, we used a simple Gaussian model forKc(t).
This is a good representation of the pair contribution to
memory function@2# and has been originally suggested
Singwi and Tosi ~ST! @67#. Thus we define a canonica
memory function of the form

Kc~ t !5V0
2 exp@2~ t/t0!2#, ~36!

whereV0 is the Einstein frequency andt0 is a binary colli-
sion time@2#.

A nonlinear fitting procedure was set up, using the ma
ematical machinery described in Sec. III, to obtain a VAC
and then, through the Gaussian approximation,~see Sec. II
and Ref.@39#! to work out the self inelastic structure facto
Ssel f„k(v),v…, along the TOSCA kinematic line„k(v),v… to
2-8
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be compared with the experimental ones. The actual fit
procedure was implemented through aFORTRAN code mak-
ing use of the MINUIT@68# standard minimizing routine
The spectrometer energy resolution was not included in
fit: experimentally estimated (D\v50.43 meV) at the en-
ergy transfer\v514.4 meV from the solid parahydroge
measurements@55# was found totally negligible if compare
to the typical width of the features of the liquid sample sp
tra. It is worth noticing that, after shifting the experimen
data to get rid of the intramolecularJ50→J851 transition
contribution ~see Sec. IV!, the aforementioned value of th
energy resolution corresponded to\v50 energy transfer.
Experimental data were fitted in the energy interval~shifted!
210 meV ,\v,60 meV and three parameters were o
tained: an overall normalization constant,C, the Einstein fre-
quency,V0, and the Gaussian binary collision time,t0. Re-
ducedx2 data and parameter estimates are reported in T
II for all the thermodynamic states.

Using Eqs.~16!, ~26!, ~27!, and ~31!–~35!, the FORTRAN

code was able to automatically evaluate thef (v) andg(v)
spectral functions and, from the latter through Eq.~19!, the
center-of-mass mean kinetic energy,^Ek&, which is also
listed in Table II. Examples of the quality of the present fi
are reported in Figs. 6~a! and 6~b! for parahydrogen liquid
samples atT514.3 K, andT519.2 K, respectively. The
agreement between experimental and simulated data is
good in the whole energy interval (210 meV,\v
,60 meV), even though, reducing the sample temperatu
negative trend in the fit quality becomes clearly visible~see
also Table II!: reducedx2 grows and exceeds 1.5 for th
three lowest temperatures. In a second independent atte
we used for the binary component of the canonical mem
function an exponential model, according to a sugges
from Berne, Boon, and Rice~BBR! @69#. Thus we defined
the following canonical memory function:

Kc~ t !5V0
2 exp~2t/t1!. ~37!

Here the reducedx2 turns out to be generally quite smalle
than in the previous case but, again, the agreement betw
fits and experimental data worsens as the temperature
creases, as shown in Table III. New estimates of the Eins
frequency,V0, of the exponential binary collision time,t1,
and of the center-of-mass mean kinetic energy,^Ek&, derived

TABLE II. Results of the fitting procedure of TOSCA exper
mental data making use of the Singwi-Tosi@67# model for the ca-
nonical memory function, including sample temperatureT, reduced
chi-squared datax r

2 , Einstein frequencyV0, Gaussian binary colli-
sion timet0, and center-of-mass mean kinetic energy^Ek&.

T (K) x r
2 V0 (meV) t0 (ps) ^Ek& (K)

14.3~2! 6.27 8.01~9! 0.120~5! 63.6~4!

15.7~2! 3.34 7.95~9! 0.118~5! 63.5~4!

17.2~2! 3.56 7.87~9! 0.115~5! 63.5~4!

19.2~2! 1.35 7.68~9! 0.119~5! 63.4~4!

21.2~2! 0.656 7.40~9! 0.129~6! 63.1~4!
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from the BBR fitting procedure are also reported in Table
for all the thermodynamic states.

A careful inspection of the two lowest temperature me
surements (T514.3 K andT515.7 K) revealed that the
disagreement between experimental data on one side, an
and BBR fits on the other, was mainly confined in the ene
interval21 meV,\v,13 meV~see Fig. 7 for a zoom on
T515.7 K data!, where the ST and BBR fitting function
exhibited an almost constant curvature, not at all followed
the experimental data. This suggested that some extra co
bution in theKc(t) was necessary. Thus we attempted to
the two lowest temperature spectra adding a long-time c
ponent to the canonical memory function. This long-tim
~mode-coupling! part was modeled using a recipe sugges
by Levesque and Verlet@70# ~LV ! and we defined, accord
ingly, the following canonical memory function:

Kc~ t !5V0
2 exp@2~ t/t0!2#1Lt4 exp~2at !. ~38!

Experimental data atT514.3 K andT515.7 K, unsatisfac-
tory described by both ST and BBR models~see Tables II
and III!, were refitted using an LV canonical memory fun
tion in the energy interval ~shifted! 210 meV,\v

TABLE III. Results of the fitting procedure of TOSCA exper
mental data making use of the Berne-Boon-Rice@69# model for the
canonical memory function, including sample temperatureT, re-
duced chi-squared datax r

2 , Einstein frequencyV0, exponential bi-
nary collision time t1, and center-of-mass mean kinetic ener
^Ek&.

T (K) x r
2 V0 (meV) t1 (ps) ^Ek& (K)

14.3~2! 2.88 8.85~4! 0.099~2! 65.2~2!

15.7~2! 1.55 8.76~4! 0.099~2! 65.0~2!

17.2~2! 1.44 8.65~4! 0.098~2! 64.9~2!

19.2~2! 0.710 8.41~4! 0.103~2! 64.7~2!

21.2~2! 0.502 8.05~4! 0.116~3! 64.2~2!

FIG. 6. Incoherent inelastic structure factorSsel f(k,v) mea-
sured along the TOSCA kinematic line~circles! and its Singwi-Tosi
@67# best fit ~solid line! for liquid parahydrogen atT514.3 K ~a!,
andT517.2 K ~b!.
2-9
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,60 meV. Five parameters were obtained for each data
an overall normalization constant,C, the Einstein frequency
V0, the Gaussian binary collision time,t0, the long-time
constant,L, and the long-time exponential decay,a. Reduced
x2 values, LV fitting parameters and new^Ek& estimates are
reported in Table IV for the two low-temperature thermod
namic states. It is evident that the reducedx2 now turns out
to be much smaller than in the previous cases~see Tables II
and III!, but the LV fitting curve does not appear to be ve
sensitive toL anda, their uncertainties being quite large. A
example of the good quality of the LV fits is reported in Fi
7 for T515.7 K data. However, the values of the paramet
V0 and t0 remain intermediate between the two previo
~binary! cases. Therefore in the following we will limit th
discussion to the pure binary models.

V. DISCUSSION AND CONCLUSIONS

The understanding of the fitting results reported in Tab
II, III, and IV can be improved through a path integral Mon
Carlo code, simulating the para-H2 samples in the same the
modynamic conditions of the TOSCA experimental measu
ments~see Table I!. These simulations were mainly carrie
out using the semiempirical isotropic pair potential deriv

FIG. 7. Zoom on the incoherent inelastic structure fac
Ssel f(k,v) measured along the TOSCA kinematic line~circles with
error bars!, its Singwi-Tosi @67# best fit ~dashed line!, and its
Levesque-Verlet@70# best fit ~full line! for liquid parahydrogen at
T515.7 K.

TABLE IV. Results of the fitting procedure of the two lowes
temperature TOSCA experimental data making use of
Levesque-Verlet@70# model for the canonical memory function
including sample temperatureT, reduced chi-squared dat
x r

2 , Einstein frequencyV0, Gaussian binary collision timet0, long-
time constantL, long-time decaya, and the center-of-mass mea
kinetic energŷ Ek&.

T (K) x r
2

V0

(meV)
t0

(ps)
L

(meV6)
a

(meV)
^Ek&
(K)

14.3~2! 1.114 8.25~8! 0.099~4! 5(2)3103 7.0~6! 64.3~3!

15.7~2! 0.853 8.16~8! 0.098~4! 7(2)3103 7.4~6! 64.2~3!
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by Silvera and Goldman@71# ~SG!, still considered one of
the most reliable for para-H2 in low-temperature condense
phases@72#. However, in order to test the effect of the p
tential on the simulated physical quantities~namely, ^Ek&
and V0), one calculation ~at T515.7 K and n
522.52 nm23) was also performed using the more rece
semiempirical isotropic pair potential derived by Norma
Watts, and Buck@73# ~NWB!. The main difference betwee
the two is the presence in SG of a small repulsive te
C9 /r 9, which approximately takes into account the effect
the irreducible three-body interaction in the condens
phases. Generally, the PIMC algorithm was operated at
value,P564, of theTrotter number, usingN5500 classical
particles@74#. However, atT515.7 K andn522.52 nm23

a calculation usingP581 was also accomplished. Only tin
differences in the values of^Ek& andV0, always smaller than
1%, were observed, both between theP564 andP581 re-
sults, and between SG and NWB ones. This check confi
that ~a! the choice of the Trotter numberP564, is large
enough to take into account correctly the quantum nature
the simulated systems and~b! the fine details of the potentia
do not play a crucial role in the evaluation of the two phy
cal quantities of interest here. The PIMC code, already s
cessfully employed for solid and liquid H2 and liquid D2
@55,75,74#, makes use of the so-calledcrudeestimator of the
center-of-mass mean kinetic energy@22#, while the Einstein
frequency is evaluated, in the framework of isotropic p
interactions, through the quantum pair correlation function
the molecular centers of mass@2,5#, g(r ),

V0
25

n

3\2M
E drWg~r !¹2V~r !. ~39!

HereV(r ) is the intermolecular isotropic pair potential. Sp
cial care was taken in order to evaluate, and to correct
the finite-size effects onV0, caused by the cutoff of theg(r )
around r 514 Å. Details on the implementation of th
PIMC code can be found in Ref.@74#, while the results for
^Ek& andV0 are reported in Table V.

r

e

TABLE V. Estimates of the center-of-mass mean kinetic ene
^Ek& and of the Einstein frequencyV0 obtained from quantum me
chanical simulation procedures~namely, PIMC; see main text!. The
upper part of the table refers to the thermodynamic conditions
the experimental data. The lower part reports the PIMC results
the thermodynamic conditions of the parahydrogen simulations
Reichman and Rabani, and Kinugawa, respectively@66,32#.

T(K) n(nm23) ^Ek& (K) V0 (meV)

14.3 22.91 61.4~1! 9.14~1!

15.7 22.52 61.4~1! 9.03~2!

17.2 22.10 61.3~1! 8.90~2!

19.2 21.50 61.6~1! 8.75~2!

21.2 20.83 62.0~1! 8.55~2!

14.0 23.50 63.2~1! 9.37~1!

14.7 24.18 66.8~1! 9.80~1!
2-10
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A comparison between the experimental estimates of
translational mean kinetic energy~both via ST and BBR! and
the PIMC results is visible in Fig. 8~a!. The two sets of fitted
data follow a similar trend, but keep an almost constant
set of 1–1.5 K, corresponding to a relative discrepancy
about 1.5%. This discrepancy is larger than the respec
statistical uncertainties, but the comparison with the typi
relative accuracy of the results from the deep inelastic n
tron scattering technique@55,75#, i.e., 2–5 %, is quite satis
factory. The present results look promising even thou
PIMC data are included: although the fitting data cannot
produce the slight peculiar trend of the simulated ones~given
by the competition between decreasing density and grow
temperature along the SVP line, e.g., in Table I!, PIMC esti-
mates of̂ Ek& lie close to the two sets of fitted data~ST and
BBR!, with a relative discrepancy of the order of 2.1% a
3.6%, respectively.

As far as the Einstein frequency is concerned, the exp
mental estimates~both from ST and BBR models! and the
PIMC results are compared in Fig. 8~b!. Here, the three set
of data exhibit a similar decreasing trend, which shows t
the Einstein frequency, unlike the center-of-mass mean

FIG. 8. Physical quantities estimated by fitting TOSCA expe
mental measurements~see Table I! making use of a Singwi-Tos
@see Eq. ~36!# model for the canonical memory function~full
squares! of a Berne-Boon-Rice@see Eq.~37!# model for the canoni-
cal memory function~open circles!. Numerical values are reporte
in Tables II and III, respectively. Results from PIMC simulatio
~see also Table V! are shown as full triangles. Lines are data splin
and are meant to be eye guides. Physical quantities stand fo~a!
center-of-mass mean kinetic energy^Ek&; ~b! Einstein frequency
V0; ~c! Gaussian binary collision time, i.e.,t0 for the Singwi-Tosi
model, and exponential binary collision timet1 for the Berne-
Boon-Rice one.
02120
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netic energy, is dominated almost exclusively by the den
of the liquid. However, the relative discrepancy among
three different estimates is substantially larger than befo
6.6% between ST and BBR, 10.4% between ST and PIM
and 3.8% between BBR and PIMC. These three sets of
ures are clearly impossible to be reconciled among one
other, given the statistical accuracy~always smaller than
1.1%, see also Tables II, III, and V!. However, we should
also note that the typical experimental method to evalu
V0, making use of the measured pair correlation function
conjunction with Eq.~39!, usually provides values with a
comparable accurateness~around 10–12%!, in the case of
liquid 4He @76#.

The third physical quantity evaluated through the fitti
procedure, namely, the binary collision times,t0 ~from ST!
andt1 ~from BBR!, cannot be easily obtained from an equ
librium simulations like PIMC. Actually some approximat
expressions exist@2# but they appear justified only in a clas
sical framework, rather inappropriate in our case. For t
reason, we decided to report in the figure only the fit resu
from the two canonical memory function models in Fig. 8~c!.
The two sets of data,t0 and t1, show a similar trend even
though they exhibit an overall discrepancy of the order
9%. This figure looks quite large but we should also obse
that the two physical quantities are not equivalent. In fa
both t represent the value oft at which Kc(t)/Kc(0)51/e,
but the shape of the two canonical memory functions is v
different, and so are the properties of the VACF they gen
ate. For example, the fourth moment of thef (v) obtained
through the BBR approach is infinite, i.e., physically inco
rect.

While the comparison at the level of the translation
mean kinetic energy is quantitatively satisfactory and that
the Einstein frequency is still acceptable, the same pict
does not hold for more involved dynamic quantities. For e
ample, it is interesting to compare the spectral functionf (v),
which is obtained from the present fitting procedures, a
two independent theoretical derivations of the same quan
The first is obtained from a MCD quantum mechanical d
namic simulation@32#, and the second from a QMC calcula
tion @66#. The simulated spectral functionsf (v) have been
derived from the published spectral functionsJ(v) as ex-
plained in Sec. II and then properly normalized. The co
parison at the level of̂Ek& andV0 is easily obtained relating
the results in Tables II and III with the same quantities
ported in Table V, and shows a fair agreement. Howev
when the same comparison is extended to the spectral f
tion f (v), substantial differences become apparent. This
shown in Fig. 9~a!. In the following we will discuss more
accurately about the aforementioned quantities, starting f
^Ek& andV0.

The fit results and their PIMC simulations have been
ready discussed in this section and are reported in Ta
II, III, and V. For MCD and QMC, from the appropriat
f (v) spectral moments, one obtains^Ek&564.8 K, V0
58.35 meV, and̂Ek&563.8 K, V059.34 meV, respec-
tively, while our PIMC results for their correspondin
thermodynamic conditions are in the same ord
^Ek&566.8(1) K, V059.80(1) meV, and ^Ek&

-

s
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563.2(1) K, V059.37(1) meV~see also Table V!. It is
worth noting that despite the lack of information about sim
lated data statistical precision, the agreement on the ce
of-mass mean kinetic energy between PIMC and dyna
calculations looks reasonably good for both MCD and QM
while the PIMC value of the Einstein frequency is bet
reproduced by QMC than by MCD. This fact, which r
sembles the behavior of the fitted values ofV0 in Tables II
and III, is not totally surprising since the QMC metho
makes extensive use of the results of equilibrium PIM
simulations @43,66#, performed, by the way, through th
same isotropic pair potential@71# we used in ours. On the
other hand, the skewness and the peakness of the four cu
appear immediately all different. In this respect, it is ve
useful to compare the values of binary collision time, whi
is connected to the fourth moment off (v) by @5#

E
2`

1`

v4f ~v!dv5V0
2~V0

212t0
22!. ~40!

From the two dynamic simulations we obtain:t0

FIG. 9. ~a! Comparison among liquidp-H2 spectral functions
f (v) obtained from a molecular centroid dynamics simulation@32#
at T514.7 K ~solid line!, from the quantum mode-coupling@66#
approach atT514.0 K ~dashed line!, from a Singwi-Tosi@see Eq.
~36!# fit of the experimental data atT514.3 K ~dotted line!, and
from a Berne-Boon-Rice@see Eq.~36!# fit of the same data se
~dotted-dashed line!. ~b! Incoherent inelastic structure factor of liq
uid p-H2 calculated along the TOSCA kinematic path and deriv
from the two simulated spectral functionsf (v) shown in panel~a!
~namely, MCD, full line, and QMC, dashed line! together with the
experimental data atT514.3 K ~circles!.
02120
-
er-
ic
,
r

ves

50.0441 ps for QMC andt050.0928 ps for MCD. The dis-
crepancy among MCD, QMC, and fitted values of the bina
collision time@t050.120(5) ps atT514.3 K using the ST
model memory function# is in this case quite large: the S
estimate oft0 is almost three times larger than the QM
value and the MCDt is, in turn, more than twice larger tha
the QMC one. Transformed from energy into time doma
this means that what is not equally described should be
intermediate- and long-time velocity autocorrelation functi
behavior. Actually the infinite-time limit of the self-dynamic
@epitomized by the self-diffusion coefficient,D# seems al-
most satisfactorily reproduced in Fig. 9~a! by all the spectral
functions @D being proportional tof (v50)#, so we might
infer that is the intermediate-time behavior of the VACF
be still lacking precision, from the experimental, the analy
cal, and the simulation points of view. By hindsight, it is n
entirely surprising that the moments predicted by QMC
reasonable because these moments are used as the inp
mode-coupling calculations. The original mode-coupli
idea was introduced@77# to interpret long-time tails but did
not quantitatively reproduce the intermediate regime
VACF @2#. For the same reason, QMC results also may
hibits problems in the intermediate regime of the correlat
function. In contrast, MCD results should be more reliable
this regime.

An alternative explanation is the possible failure, in o
(k,v) range, of the Gaussian approximation@defined in Eq.
~22!#, which is used both in the experimental data analy
and in the QMC approach@66#, but not by MCD. However,
since this approximation is applied in rather different wa
~as a fit in the present work, iteratively by QMC!, fitted and
QMC results could diverge towards different and unpred
able directions: this fact would be sufficient to explain w
the three methods, namely, experimental, QMC, and MC
exhibit the aforementioned discrepancies. Of course,
makes very important a precise check of the validity of t
Gaussian approximation and its range of applicability.

The comparison between QMC and MCD simulations
sults, coupled with the Gaussian approximation of Eq.~22!
to obtain Ssel f„k(v),v…, and experimental data atT
514.3 K is finally summarized in Fig. 9~b!. It is evident that
the MCD self inelastic structure factor~reducedx255.565)
is much more similar to TOSCA data than the QMC o
~reducedx2590.78), despite the thermodynamic conditio
of the latter being closer to the experimental density a
temperature~see Table V!. Since the Gaussian approximatio
has been used in the QMC case not only by us to prod
Ssel f„k(v),v… from f (v), but also, in a self-consistent way
to obtain the QMCf (v) itself, we have to conclude tha
QMC results are impossible to be reconciled with our expe
mental findings@i.e., ourSsel f„k(v),v…#. However, we still
cannot decide, provided our experimental data are faultl
whether this problem is caused by the failure of the Gauss
approximation or by some other assumptions in the QM
routines used. On the contrary, MCD did not make use
this approximation to work out itsf (v).

In conclusion, in the present study we have recorded
incoherent inelastic neutron cross section of liquid and so
parahydrogen in various thermodynamic conditions using

d
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neutron spectrometer TOSCA. The measured cross se
provided direct experimental access to the incoherent pa
the inelastic structure factor for the centers of mass of
H 2 molecules in the system under observation. Measu
data have been corrected for the experimental effects
then processed in the framework of the Young-Koppel mo
in order to remove the contributions coming from the
tramolecular~rotovibrational! dynamics. The Gaussian ap
proximation has been then assumed, aiming to relate the
coherent scattering law of the liquid samples to the ene
spectrum of their velocity autocorrelation functions. The
correlation functions have been subsequently obtained f
a fitting procedure, making use of the quantum generali
Langevin equation and two model memory function
namely, with a Gaussian and an exponential time decay.
fitted energy spectra of the velocity autocorrelation funct
have been also compared to the most recent results of
centroid molecular dynamics and self-consistent quan
mode-coupling theory. Three moments of the energy sp
trum of the velocity autocorrelation function were related
important physical quantities~namely, center-of-mass mea
kinetic energy, Einstein frequency, and binary collision tim!
and the first two were also simulated through a stand
~equilibrium! path integral Monte Carlo code. The results
this comparison came out very interesting and, for exam
showed that the center-of-mass mean kinetic energy and
ite
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ed

.

ys
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Einstein frequency can be experimentally evaluated us
this fitting procedure with a similar~or even better! level of
accuracy than what is normally achieved by more usual
perimental techniques. However, the analysis of the bin
collision time and a careful review of the experimental a
simulated energy spectra of the velocity autocorrelat
function showed that large inconsistencies still exist both
tween experimental and simulated data and between s
lated data from the two different approaches. Summariz
we conclude that further development of theoretical a
simulation approaches, as well as more extensive experim
tal efforts, are necessary. In addition, a comprehensive ch
of the validity of the Gaussian approximation in liquid H2 is
also highly needed.
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