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Direct experimental access to microscopic dynamics in liquid hydrogen
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We have obtained the double-differential incoherent neutron scattering cross section of liquid and solid
parahydrogen in various thermodynamic conditions using TOSCA, a time-of-flight, inverse geometry, crystal
analyzer spectrometer, operating at the pulsed neutron source ISIS. The measured cross section provides direct
experimental access to the self part of the center-of-mass inelastic structure factor of the parahydrogen mol-
ecules in the system. Data have been corrected for the experimental effects and then analyzed in the framework
of the Young-Koppel model and the Gaussian approximation. The velocity autocorrelation functions and their
energy spectra have been obtained from a fitting procedure, making use of the quantum generalized Langevin
equation and of model memory functions, and finally compared to the most recent results of both molecular
centroid dynamics and self-consistent quantum mode-coupling theory. Some dynamic quantities were also
related to simple equilibrium properties and simulated through a standard path integral Monte Carlo code.
Results are very interesting but still urge for further developments of theoretical and dynamic simulation
approaches, as well as for more extensive experimental efforts.
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[. INTRODUCTION accessible with the development of the last generation neu-
tron sources and of novel instrumentati&.

In the recent years the microscopic dynamics of simple If we consider liquid*He, the idea goes immediately to
liquids has attracted many researchers with the consequeit$ superfluid properties. This is a very peculiar case, where
production of a large literaturfel]. As far as classical simple the structural and dynamical properties of the liquid are
liguids are concerned, this massive work has generated fzeavily affected by its quantunBose-Einsteip statistics.
wealth of experimental data that can be satisfactory interHowever, there are important cases where the exchange of
preted within a well established theoretical framewidk In particles does not play an appreciable role, but the structure
addition, in those cases where a purely theoretical approacind dynamics are still largely determined by the quantum
becomes insufficient, one can rely on numerical methodslelocalization propertielsl0]. This is the case of the normal
(e.g., molecular dynamics computer simulajiowhich al-  phase of liquid*He, liquid *He at T>Tg(T is the Fermi
low to obtain any time-dependent correlation function that istemperaturgand of the liquid hydrogens (H D,, and T,).
experimentally accessibl8]. On the other hand, for quan- Liquid Ne exhibits visible quantum features too. However, in
tum and semiclassical liquids the situation is far less satisthis case, the quantum effects are sufficiently small that a
factory: only approximate methods can be used and, wheperturbative theoretical approaghg., the Wigner-Kirkwood
guantum effects begin to play a crucial role, a full theoreticalexpansion[11]) is usually sufficiently accurate to describe
calculation of the spectral features becomes quite difficult, ithe observed structural and dynamic characteristics. Thus,
not totally impossible. It means that a rigorous description ofwhen quantum effects play a relevant role, we can broadly
the quantum dynamics in a simple flui@specially forT distinguish between two main categories of liquids, as sug-
>0) at the microscopic level is still an open problem in thegested for the first time by Dyugadi0]: on one side we
physics of disordered systems. So far, no fully satisfactonhave liquid systems where the exchange of particles is rel-
theoretical approach has been proved to give a complete arvant and Bose-Einsteitsuperfluid “He) or Fermi-Dirac
precise description of the dynamics of a quantum liquid, andcold liquid 3He at T<Tg) statistics should be applied; on
even computer simulation has not reached the necessary abte other side we have liquids, like the hydrogens, where the
curacy that is needed in order to give quantitatively acceptexchange is negligibléand the Boltzmann statistics satisfac-
able predictions of the relevant dynamic quantities, with thetorily applies, but the quantum delocalization effects are still
only possible exception of ground-state superfifiite [4]. relevant. In the latter case microscopic features are affected

On the experimental side, the inelastic neutron scatteringy quantum mechanical effects in a way that cannot be sim-
technique[5] seems to have gained a prominent role as gly dealt with through a perturbative approach.
source of reliable information on the dynamics of simple In recent years computer simulation has been of great
liguids [6]. As a matter of fact, the double-differential neu- help in interpreting the features of the liquid state at the
tron scattering cross section, which was originally derived bymicroscopic level. As far as static properties are concerned,
Van Hove[7], is truly quantal. This has allowed an extensive Monte Carlo(MC) methodq 3,12] are routinely used to pre-
experimental work on the dynamic properties of the heliumdict the microscopic structure of liquids, once a suitable in-
liguids [8]. However, intrinsic experimental difficulties have teraction potential is provided 3]. In turn, dynamic features
prevented, so far, a complete experimental exploration of thean be evaluated using the molecular dynamics technique
dynamic properties of other simple quantum liguidsgy., the  [14-17. Unfortunately, these two simulation procedures ap-
hydrogens Nowadays this field is becoming more and moreply to classical liquids only. When quantum fluids are in-
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volved, both simulation methods break down. However, assjolander in an important work appeared in 19&], and
far as the static structure is concerned, the path integrdurther extensions and approximations have been subse-
Monte Carlo(PIMC) simulation technique has been devel- quently proposed by Nelkin and Ghatgd0], Zwanzig[41],
oped[18-20, allowing to determine the microscopic equi- and Seard42]. More recently, a self-consistent quantum
librium properties of quantum liquids and solids, even at themode-couplingQMC) theory has been suggested by Rabani
level of the superfluid phase ofHe [21,22. The PIMC and Reichmaf43] and applied to the case of liquid parahy-
simulation technique is based on a factorization of the dendrogen. This model starts from a definition of exactquan-
sity matrix [23,24]: the quantum system is replaced by atum generalized Langevin equation which follows from the
system of classical ring polymers, which may be simulatechistorical works of Zwanzid44], Mori [45,46], and Kubo
using classical MC. Each ring polymer consistsPo€opies  [47]. Using static structural information from PIMC simula-
of the quantum particleR being the Trotter numbe25])  tions, a simple quantum viscoelastic modsliggested by
and exact quantum mechanical results are obtained in theovesey{48]), and a pure exponential decay law for the time
limit P—co. It is important to point out that a rigorous iso- dependence of the memory function, the autfdd have
morphism between the quantum system and the set of clabeen able to obtain a satisfactory result for the dynamic
sical ring polymers has been established and explained bstructure factor of liquid parahydrogen &at=14 K. How-
Chandler and Wolynel26]. On the contrary, the state of the ever, no direct quantitative comparison with the available
art of the simulation techniques dealing with the dynamics okexperimental result§49,50 was provided 43].
guantum liquids is not yet established on a firm and rigorous From the computational point of view, one could imple-
basis, even though some very interesting results have begument a brute-force method, like the one invented to simulate
to appear in the literaturi27—33, especially from the so- the Newtonian dynamics of a largbut finite) number of
called path integral centroid molecular dynamics approachclassical particles. However, in this case, one should simul-
In this context we should also distinguish among the variousaneously solve the Schiimger equation for all the mol-
ranges of magnitude of the momentum transfds, In the  ecules in the interaction field generated by their neighbors.
very low k region, where the hydrodynamic approximationsObviously this is an extremely hard task, even taking into
can be still applied, the dynamic behavior of a quantum sysaccount the present capability of the fastest supercomputers.
tem is generally understoo@t least at a semiquantitative Alternatively, one has to rely on approximate simulation
level) and only quantitative refinements are neces$ad. methods that are appearing in literature and look quite prom-
At the other end of thé scale, when the impulse approxi- ising for evaluating the dynamic features of quantum sys-
mation (IA) applies, the dynamic behavior of quantum lig- tems [32]. Presently, the comparison with th@ynamic
uids is also well described: the enerdy«) and momentum experimental results is fairly good, at least to a semiquanti-
transfers are so large that the interpatrticle interactions durintative level[50]. In this context, any precise experimental
the scattering process can be almost neglected, or accountdgnamic information comparable to theoretical or simulation
for by using small final state effect correctiof8]. In this  predictions is extremely valuable.
case, the only important microscopic features that determine In this paper, we present the results of an experiment on
the neutron scattering law are the molecule recoil energy anliquid parahydrogen that satisfies some of the above men-
the single-particle momentum distribution of molecular cen-tioned requirements. On one side, the measured spectral re-
ters of mas$35]. In the IA the most prominent effect of the sults are sufficiently precise to allow a fine quantitative com-
interactions resides, before the scattering process, in a quaparison with the available theoretical and simulation
tum renormalization of the translational kinetic energy whichpredictions. On the other hand, the span of momentum trans-
(at low temperature becomes strongly density dependentfer is considerably larger than the extent to which hydrody-
[36,37. Thus the dynamic problem is virtually solved in the namics applies. Actually, the present experimental results
two extreme scenarios: where the quantum system can h@ovide direct information on the single particle molecular
considered either as a uniform continudusery low values dynamics in rather interesting momentum and energy trans-
of k, as the ones probed by optical spectrosgapyas a set fer ranges. The experimental scattering law, related to the
of almost freely recoiling particle@ery high values okand  self inelastic structure fact®.. {(k,w) extends fromh w=
w, as in deep inelastic neutron scattejing —10 meV up tohw=80 meV, while the momentum trans-

It is in the region of intermediat& that the dynamical fer, #k, monotonically grows from 3 A'to 8 A~1 Thus,
problem is still partially unsolved from the theoretical point due to the relatively high value df the purely diffusive
of view, at least as far as quantum and semiquantum fluidmotion is not the main issue in our spectra and we expect
are concerned. This is the rangelofvhere the static struc- that only approximate information on the self-diffusion coef-
ture factorS(k) shows its main features and the microscopicficient D will be worked out. However, owing to the ex-
guantum dynamics of the system is heavily determined byended energy variation, we will be able to obtain reliable
the interaction of each molecule with its neighbors. Prelimi-information on other dynamic quantities, as well as on the
nary attempts to shed some light on this topic have beetime correlation functions of some selected observable. In
historically carried out by Vineyard38], who introduced Sec. Il we will recollect the relevant theoretical framework
some important approximations in the theoretical evaluatiorof our study and we will discuss the approximations used in
of the dynamic structure fact@(k,w). The theory has been the present work. The experiment will be described in Sec.
later developed, in the framework of the well-known Ill, and we will show how to determine directly the self
fluctuation-dissipation theorem, by Rahman, Singwi, andincoherenkt inelastic dynamic structure factor of liquid
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parahydrogen from the experimental spectra. In Sec. IV wavhich directly connects the functiom,(t) to the velocity
will explain how to obtain the velocity autocorrelation func- autocorrelation functiofVACF) u(t) defined as

tion and its spectral shape by using the Gaussian approxima-

tion for the intermediate scattering function. Finally, in Sec. u(t)=(v(0)-v(t)). (7)

V, we will discuss the results and we will compare the quan- ) ) o
tities derived from the experimental spectra with their esti-1n€ next two terms in the cumulant expansion appearing in

mates obtained from literature and from PIMC simulations. EQ: (3), i-€., y2(t) andys(t), are given explicitly by Rahman
et al.[39]. These functions are determined by the irreducible

correlation functions among four and six velocities, respec-
tively.
Following Van Hove[ 7], we define the intermediate scat-  Within the applicability limit of the Gaussian approxima-
tering function for the molecular centers of maB¢k,t), as  tion, the velocity correlation function determines uniquely
the self intermediate scattering function and, consequently,
1 . . the self dynamic structure factor. Now we define the power
F(k,t)= N 12 (exd —ik-rj(0)]exdik-r(O)]), (1) spectrum of the VACFJ(w), by means of the Fourier trans-
form

Il. THEORETICAL FRAMEWORK

where 7.k is the momentum transfer,(t) represents the
Heisenberg operator for the center-of-mass position of mol- Hw)= if“ﬁ —iwt
? e o w)= dte™'“u(t). 8
eculel at timet, and(---) indicates a quantum statistical 2m
average. As we are interested in the single molecule dynam-
ics, we need only to deal with theelf part of the intermedi- In a quantum system, because of the intrinsic structure of
ate scattering function, which is u(t), some constraints apply to the power spectriifw)
L [5,51. For example, from the property —t) =u*(t), it fol-
. . lows that J(w) is real, while from the propertyu(—t)
Fsei(k,t)= N 2 (ex —ik-r;(0)Jexdlik-r;(t)]) =u(t+ip#%), where B=1/(kgT) andkg is the Boltzmann
constant, the well-known detailed balance condition follows:
=(exgd —ik-ry(0)]exdik-ry(t)]). (2

The calculation ofF¢1(k,t) is not a trivial task, especially

in a quantum liquid. However, Rahmaet al. [39] have If we split the power spectrund(w) in its symmetric and
shown that it can be rigorously written in an isotropic systemantisymmetric components, i.e., we define

as

— o0

J(—w)=exp — Bhow)l(w). 9

J(w)=Js5(w)+Ia(w), (10
hk? -
F(k,t)=exp it=—|exp > (—=k)"y,(t)|, (3  where
2M A=1
1
whereM is the molecular mass. The first exponential repre- Je(w)= E[‘](w)+‘](_w)] (11

sents the recoil energy term and the functionét) are ex-

pressed by means of the quantum statistical averages of tf()ﬁ.'d

velocity operators. We note that E(B) is rigorous, while

limiting the cumulant expansion to the first term represents 1

the well-known Gaussian approximati¢88]. In this case, Ja(w)= E[J(w)—J(—w)], (12
all the dynamic information is contained i (t), given by

it turns out that the symmetric componely{ w) is given by

t t
71(t):f dtlf ldt2<vk(t2)vk(tl)), (4) the real part ofu(t), while the imaginary part determines the
0 0 antisymmetric terml(w),

wherev, = (v-k)/k is the projection of the velocity along 1 (=
the k direction. Taking into account the translational time Js(w):;f dtcogwt)Re u(t)], (13

invariance of the quantum statistical average, Hj. be- 0

comes 1 =
. ‘JA(w):;f dtsin(wt)Im[u(t)]. (14

0

Vl(t):fodtl(t_t1)<vk(0)vk(t1)>- )

Finally, using the detailed balance condition of E®), it is

17t 1_e—ﬁﬁw
yl(t)=§fodt1(t—t1)u(t), (6) JA(w)=—1+efﬁﬁwJs(w)=tanft,[5’ﬁw/2)J5(w), (15
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which is one of the many possible ways of expressing the 2 (% Jn(w)
aforementioned fluctuation-dissipation theorem. We observe Yi(t)=— 3 de—Zsin( wt). (24
that the two functionsf(w) andg(w), defined by Rahman 0 w

et al.[39] and related to the energy spectra of the imaginar
and the real parts af(t), are simply connected to the anti-
symmetric and symmetric componentsJg§iv) through

XNithin the applicability limit of the Gaussian approximation,
the single particle dynamic problem reduces to find a reliable
model for the VACFu(t) [see Eq.(7)]. This is relatively

3% simple in classical liquids, where a memory function ap-

Ia(w)= —wf(w), (16) proach can help in solving the problef]. The situation

4M becomes more difficult in the quantum case whefs is a
complex function. However, it has been shol@7] that this

I w)= 3kgT ) 17 difficulty can be circumvented taking advantage of the sym-
slw)= 2M 9(w). metry properties of the Kubo transform of the VACF. Fol-
lowing Kubo[52] we define acanonicalvelocity autocorre-
From the zeroth moment af{w) one writes lation functionu®(t) according to the prescription
v * (Ew w(t) == [Pane 0y M vn)) (25)
dod(w)=2| dwldgw)=u(0)=+—u, (18 B (),
. 0 M/2 0

where(E,) is the single particle mean kinetic energy and theWhereH Is the Hamiltonian of the system. Theanonical
K gle p ) 9y VACF turns out to be even in timé2] and its Fourier trans-
normalization condition fog(w) follows:

form reads

” (Ew) 1 [+ 4
fo dog(w)= (312 kaT" (19 J(w)= Ef dte '“tuc(t). (26)

—oo

It is worth noting that the mean kinetic energy in a quantumThis turns out to be simply related to tleymmetricand
system differs from the classical expressigramely,( ﬁ') antisymmetricspectra ofu(t) by
=3/2gT) and therefore the integral @f{w) equals 1 only

in the classical limit. Finally, still following Rahmaat al. ()= tanl‘(BﬁwIZ)J (@) 27
[39], it is easy to obtain the normalization condition for the (Bhwl2) “S°°0
function f(w),
1
C = —
J(w) (Bhiol2) Ja(w). (28

J do f(w)=1. (20
0 Equations(25), (27), and (28) are also known as thKubo

Now we have all the ingredients to compute, given the VACFansformsin time and frequency space, respectively.

or its energy spectrum, the self-dynamic structure factor,
IIl. EXPERIMENT DESCRIPTION

Sse”(k,w):ijmdtefi“’the”(k,t), (21) The neutron scattering e>.<periment was carried out on
27 ) o TOSCA-I, a crystal-analyzer inverse-geometry spectrometer
operating at the ISIS pulsed neutron sour@utherford
which becomes, within the Gaussian approximafiom, Eq.  Appleton Laboratory, Chilton, Didcot, UK[53]. The inci-
(3) truncated at the first ordgr dent neutron beam spanned a broad eney (ange and
the energy selection was carried out on the secondary neu-

1= » R tron flight path using thé002) Bragg reflection of ten graph-
Sself(klw)E;fo dtexd —k“y1(t)Jcog (w— w)t ite single crystals placed in backscattering around 136.6°.
This fixed the nominal scattered neutron energy to
+k27'l(t)], (22 =3.5 meV. Higher order Bragg reflections were filtered out

by 15 cm thick beryllium blocks cooled down to 30 K. This

wherew, =#k2/(2M) is the recoil frequency an@l?(t) and 9geometry allows tc_: cover an extended energy transfer range,
y\(t) are the real and imaginary parts of the mean squargVen though the fixed posmon_of the cryst_al analyzer_s _and
displacement functiory,(t), respectively, as defined in Eq. the small value of the neutron final energy imply a variation

(6). These two mean square displacement functions are eadl K Which is a monotonic function okw. The resolv-
ily obtained from the components of the spectrifw), ing power of TOSCA-l was rather good (1.4%A%/E,;
<3.5%) in the energy transfer region relevant to the present

3 experiment (4 me¥/Aw<114 meV). The extended spec-
s(@) [1—coq wt)], (23  tral range of TOSCA makes this instrument a sort of neutron
w? equivalent of a Raman optical spectrometer.

Rt—zjmd
’Yl()_30 w
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Intramolecular transitions could be in principle easily ob- 100 0 j_g-0=1
served well beyond the first vibrational transition of molecu- -
lar hydrogen(we remind that this is placed at 514.5 meV 8|
However, it should be also pointed out that, due to the mo- ~
lecular recoil, the observed shifts are generally much greate &
than those observed on a conventional Raman spectrometef; J=0-J'=3
The Raman spectrum of liquid hydrogen is characterized byg : \/f\\

: %,
Yot

b. units)

+ e son alocas

J=0-J'=5
oy, J=0-0=7

strong intramolecular transitiongotations and vibrations ‘g
However, on the Stoke@nergy-lossside of each intramo- g . {
lecular line, a side phonon band of intermolecular origin is ¥ 2§ %"“‘»«ww/-"‘f‘“"’“.
visible [54] and originates from the same mechanism that =
produces the broad quasielastic band that is attributed to col 0 ! . . . . .
lective multiphonon excitations. Similar concepts can be ap- 0 200 400 600 800 1000
plied to the neutron scattering spectrum from liquid hy- ® (meV)

drogen. Here the fundamental difference between the quasi-
elast!c(no Intramole(_:ular excitation Is qulvédmd t.he n- subtraction measured on liquid parahydrogen Bt17.2 K and
elastl_c(one or more mtramme.cmar eXCItatlonS are involved p=0.43 bar. Each peak represents a rotational transition starting
C(_)n_trlbutlons IS due to the different We'ght of the Se_lf an(_jfrom the ground level=0. The transition to the even levels are
distinct translational components. Actually in the quasmlasﬂq,veighted by the small H coherent cross section, therefore only the
spectrum, the Van Hove’] formulation applies and the con- yansitions to the odd levely =1,3,5.7 are visible.

tribution to the neutron double-differential cross section is a

mixing of the two componentself and distingt as in any cross-section ¢,=1.8 b), their intensity is almost two or-

monatomic liquid. However, du_e to the lack of co_rr_elatlon ders of magnitude smaller than the transitions to the odd
among the phase factors in the intramolecular transitions PEEiateqdriven by the incoherent one; =80 b)[5]. Thus the
taining to.different mol_ecules., only the self term builds UP observed spectrum reduces, for a1ny practical purpose, to a
and contributes to the inelastic neutron spectrum. set of odd rotational transitionsJ(:O—d’: 135 ) ’

e to the small moment of inertia of hydrogen, rotational
equivalent of an optical Raman spectrometer, the only differ; ydrogen.

ence being the momentum transfer monotonically growingter&lnSitionS are all well separated£0—J'=1 implies an
along with the energy shifk,,_...— (2m,w/%)Y2 wherem, nergy jump of 14.7 mevV, whild=0-J'=3 corresponds

is the neutron mass. In the high-energy region of the spect—0 a jump of 88.2 meY. As a consequence, taking into ac-
trum the momentum transfer grows to such an extent that thCOurlt the extra shift induced by the molecular recsée Fig.

scattering process is expected to enter the IA regime. Ther E) the overlap of different bands is small and each band can
9p Xpe - . gime. e separately analyzed. The high-energy region of the spec-
fore, the spectrum carries information relative to the momen:

e tra, involving the rotational transitions beyond the first ex-
LuaT\ ddlf;:rltgztllgsv()efng]re centerts ?f mf”‘ﬁgﬂh On_ the fott}:]er cited rotational level, {=0—J"=3,5,7) has been already

’ energy spectral region, the size of the moanalyzed in the framework of the IA reginib5] (as shown
mentum transfer is of the order of the reciprocal of the inter-
molecular distances between neighbors. In this case the self
contribution to the scattering function is expected to provide ]
information on the dynamics, mainly driven by the pair in- 500 N
teractions. Even though the transition between these two re ] .
gimes is not clearly defined, it is sensible to assy&ehat 400+
it lies beyond the first peak of the intermolecular static struc- ]
ture factorS(k) (which is located around=2 A~1) in the 300
region where S(k) becomes =1 (i.e., k=6-8 A1), ]
Should the momentum transfer decrease to much lower valw™ |
ues, to such an extent that the hydrodynamic regime woulc | J=0-0=3 .-~
drive the microscopic dynamics, it would be possible to gain ol
direct information on the long-time behavior of the VACF ] -
and the self-diffusion coefficiert6]. Unfortunately, this is ot . ' . ' . ' . ' .
not the case of TOSCA and only an approximate estimate of 0 100 200 300 400 500
the diffusive dynamics is expected to come out from the K2 (A%)

present hydrogen spectra.

If pure liquid parahydrogen is considered, the inelastic g 2. Recoil energie, , as a function of the square of the
neutron spectrum becomes rather sim(siee Fig. 1. Due o momentum transfer from the spectrum of liquid parahydrogen at
the low experimental temperaturd € 14-21 K) only the 1=14.3 K. The slope of the linear filashed lingis proportional
fundamental rotational statd £ 0) is populated. In addition, to the inverse of the recoil mags5] which turns out to beM
since the transitions to the even stated=0—J"  =(1.99+0.01) amu. This demonstrates that we observe the whole
=2,4,6...) areweighted by the small hydrogen coherent molecule recoil.

FIG. 1. Raw experimental inelastic neutron spectiiafter can

600

(meV)

021202-5



M. CELLI, D. COLOGNESI, AND M. ZOPPI PHYSICAL REVIEW E566, 021202 (2002

0.16 1 TABLE I. Thermodynamic conditions of the measured liquid
hydrogen samples, including the theoretically calculated parahydro-
gen percentagep-H,] and integrated proton curreht. The triple
point temperature i¥1p=13.803 K.

0.14

T (K) n(nm=® p(bar) [p-Hy] (%) IC (nAh)

k/k'(d°6/dQ/dE") (barn/(meV sr))

14.32) 22.916)  0.161) 99.99 2368
15.72) 22.526)  0.241) 99.98 1917
=0-=7 17.22)  22.106) 0.431) 99.96 2271
;%;m»«w\ 19.22) 21.506) 0.821) 99.88 2310
s T 21.22) 20.839)  1.341) 99.71 1344
0.00 T T T v T y T T 1
200 400 600 800 1000

surements of the empty cryostat, we cooled the empty
container at the desired temperature=(17.2 K) and we
FIG. 3. Experimental inelastic spectrum measured on liquidmeasured its time-of-flightTOF) neutron spectrum. Then
parahydrogen af =14.3 K after subtracting can contribution and hydrogen was allowed to condense in the scattering cell. This
multiple scattering. Thd=0—J"=1 transition is not reported in was made of aluminurfl.0 mm thick wall$ with a circular-
the picture because in this case the impulse approximation does nstab geometry. The sample thickness was also 1.0 mm and
apply. The line represents the best fit to the data using the impulstéhe cell diamete(50.0 mm) was slightly larger that the beam
approximation and a Gaussian function for the momentum distribueross section. The pressure of the gas handling system was
tion. From the fit we could extra¢b5] the center-of-masftransla-  set to p=0.43 bar[slightly larger than the corresponding
tional) mean kinetic energy(E,). saturated vapor pressu(8VP)] in order to make sure that
the cell was filled with liquidthe SVP affT=17.2 K is 0.36
in Fig. 3. In this case, due to the high value of the momen-hay. At the bottom of the scattering container, out of the
tum and energy transfers, the intermolecular interactiongeutron beam, we had inserted some powder of a paramag-
only give rise to a simple renormalization of the center-of-netic catalyst made of @05 on an ALO; substrate in order
mass mean kinetic energy. This, in turn, affects the width otg speed up the conversion from orthohydrogen to parahy-
the molecular recoil peak which describes the free motion ofirogen. The relative concentration of the two species was
the molecule. A simple modification of the Young-Koppel monitored looking at the scattering spectrum. In particular,
theory[56] can be applied and we could determine the transwe could observe the progressive disappearance oflthe
lational mean kinetic energy in liquid and solid hydrogen as=1_, 3’ =1 (quasielastic lintransition, which is weighted
a function of the thermodynamic conditiofts5]. by the incoherent cross-section of the prof68], from the
If we focus our attention on the first rotational transition low energy portion of the Spectrum_ When this Spectra| fea-
(J=0—J"'=1) of molecular parahydrogen, the double- tyre was below the limit of detectabilifjn practice, masked
differential cross section is given §$7] by the J=0—J’'=0 transition, which is weighted by the
P coherent cross section of the protome assumed that the
o Ki 0 2 equilibrium had been reached. The equilibration process
dQde ko 27 f(Rlo-1Sser(k 0)® 80— o), took, in our case, about 20-25 h. The estimated concentra-
(29 tion of parahydrogen, based on the theoretical calculation
[59], was assumed to be 99.96%. Then we started recording
wheref (k) is the intramolecular form factor ar«(k, ) the scattering spectrum up to an integrated proton current of
is the dynamic structure factor for the self motion of the2271 wA h (roughly, 12 h of beam time
molecular center of mass. The symblrepresents an en- The following spectra were collected in a similar way,
ergy convolution and’ is the Dirac delta function. In this after changing the temperature and pressure of the sample,
case the value of the momentum transfer is not large enougind performing some short test spectra, to make sure that the
(k<8 A1) to justify the use of the IA an&se{(k,w) car-  sample was already at the equilibrium composition. The sta-
ries much information on the effects of the intermolecularbility of the thermodynamic conditions during the experi-
interactions on the single particle dynamics of molecular hy-ment was very good. Temperature fluctuations never ex-
drogen. In order to establish a comparison with variouseeded 0.1 K and pressure fluctuations were of the same
simulations and theoretical models, due to the instrumentadrder of magnitude of the pressure gauge sensitifiigy.,
characteristics of TOSCA, the cross section in ER9) 0.01 baj. The temperature uncertainty estimated for our
should be evaluated along the kinematic path of the speaneasurementisee Table)l, i.e., 0.2 K, was mainly due to a
trometer, provided a suitable model is given &g, «(k, w). tiny gradient across the vertical dimension of the sample cell.
The measurement was carried out at seven thermodyFhe densities of our sampléand their uncertaintigswvere
namic points. Five were selected in the liquid ph#&see later derived according to Ref59]. The full set of param-
Table ) and two in the solid onésee Ref[55] for the de- eters characterizing the present experiment is reported in
scription of the solid phase measurements and the highFrable I. In Fig. 4a) we show the raw spectrum of liquid
energy data analysisAfter performing the background mea- parahydrogen aT=14.3 K andn=22.91 nm® in the re-

® (meV)
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. . . FIG. 5. Inelastic spectrum measured on liquid parahydrogen at
FIG. 4. (a) Raw experimental inelastic spectrum measured ONr_ 519 K in the energy region of thd=0—J'=1 transition

!Iqlilr? plarahydrogen ar= 14%31 CI)(O(afte\r/caB sgbtractidrzgometdl (circles. Experimental data are compared to the simulated single-
in the low-energy zonef{w meV). (b) Raw experimenta scattering(dashed ling and multiple-scatteringdot-dashed ling

Tellgsztchs:ri;:;rEr;G r(r)l; as“[e;d( cfntn solid pet\)rtahytc_i(;om ath_ spectra and their suigsolid line). The multiple-scattering contribu-
Lo —<0.02 hm = fafter can sublraclignzoomed N ;4 is gypsequently subtracted from the data.

the same low-energy zone. The unrecoiled0—J’' =1 transition
is evident athw=14.42(3) meV.
was already positively tested by the authpgg] for liquid

gion of the first rotational transitionJ&0—J’=1). As a  parahydrogen in a large energy range. It assumes a Gaussian
comparison the lower part, Fig(#, shows the equivalent shape forf(w), fixing its three parametefamplitude, mean,
spectrum for the solid samplgs5] at T=12.2 K andn and standard deviatiorby imposing the overall normaliza-
=26.02 nm3. In the liquid phase, the rotational ling ( tion [see Eq(20)] in the positivew region, the value of the
=0—J'=1) is broadened and shifted by a combinationtranslational mean kinetic ener¢$9] and the self-diffusion
with the diffusive motion and the intermolecular excitations coefficient[39]. The mean kinetic energy was obtained from
[60], while in the solid phase spectrum, a relevant fraction ofR€f. [55] while the self-diffusion coefficient was derived
the hydrogen molecules transfers the recoil to the whole latffom the experimental data of Ré63].
tice and an extremely sharp rotational line appears in the The two simulated spectrésingle and multiple were
unshifted position of 14.43) meV. added together in the 4 meiw<<80 meV interval of
TOSCA-I. Then the unknown instrumental constant was
worked out and all the experimental data were subtracted of
their respective multiple scattering contributions. An ex-

The experimental TOF spectra were transformed into enample of this procedure is shown in Fig. 5, where the agree-
ergy transfer data, detector by detector, making use of thenent between experimental and simulated data Tat
standard TOSCA-I routines available on the spectrometers=21.2 K is appreciable, considering the extreme simplicity
and then added together exploiting the narrow angular rangef the model forf(w). The only visible disagreement is in
spanned by the whole set of detectors#=9.5°) [53]. In  the low-energy region (10 me¥fhw<25 meV) where,
this way, we produced a single double-differential cross-however, the multiple scattering contribution appears to be
section measurement along the TOSCA-I kinematic pathnegligible. As we will see in the following section, a more
[k(w),w] for each thermodynamic condition of Table I. elaborated model fof(w) can largely improve the agree-
Then, data were corrected for the/k, factor and subtracted ment between experimental and simulated data.
of the tiny empty can contribution, separately recorded@ at ~ Following this stage, self-absorption correction was ap-
=17.2 K(with an integrated proton current of 748A h).  plied to the normalized single-scattering experimental data,
Two fundamental corrections were carefully performedd-  still assuming the infinite slab approximation and making use
tiple scatteringevaluation andself-absorptionattenuation.  of the aforementioned analytical approdéi]. However, in
As far as the former is concerned, we simulated both singlethis case, no model was employed for the parahydrogen total
scattering and multiple-scattering neutron spectra measureatattering cross section, which, on the contrary, was obtained
by TOSCA-l for each sample through the analytical ap-from the experimental results of direct measurements on
proach suggested by Agrawal in the case of an infinite flathe SVP liquidp-H, at T=16.0(2) K[64]. At the end of
slablike sampl¢61]. The main inputs of this procedure were the correction procedure, the processed data, limited to the
the self inelastic structure factors of the samples to be meat meV<#w<80 meV interval, were corrected for the ro-
sured in a wide region of thek(w) plane. These functions tational dynamics. Since, in this energy region, the0
were simulated through the Gaussian approximatidready —J’'=3,5,7 transitions are negligible, the spectrum was di-
described in Sec. Il and in Rgf39]) using a model spectral vided by the intramolecular form factor for the=0—J’
function f(w) [see Eq.(16)]. This simple heuristic model =1 transition[56] j2(kd/2), whered is the mean interatomic

IV. DATA ANALYSIS
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distance in H andj,(x) the spherical Bessel function of the 3kgT

first order. Then, an energy shift &,_;=14.42 meV, i.e., Ut =—; (). (32)
the pureJ=0—J'=1 transition energy derived from the

present solid parahydrogen measurements, was applied to fehe normalized correlation functioli(t) is then assumed to

move the effect of the5 function in Eq.(29). obey a generalized Langevin equatitsee Reichman and
From Eq.(29) and the knowledge df(w), we could ex-  Rabani[66]), that is,

tract theS,. #(k(w),w), i.e., the projection of the incoherent

dynamic structure factor of condensed hydrogen on the kine- : t

matic path of TOSCA53]. In order to compare the experi- W(t)=— jodthC(tl)\P(t_tl)r (32
mental data with the results of the calculations, we rely on

the Gaussian approximati¢B9]. This is known to be rigor- \yhere the dot means a time derivative aKd(t) is the
ous in a harmonic solid but becomes less accurate in the caggemory function of the canonical VACF. The solution to Eq.
of a liquid, even in the classical ca2]. In particular, the (32 is easily obtained using the Laplace transform formal-
approximation is known to be good in the lowregion, jsm. Actually, taking advantage of the time symmetry of

where the dynamics is mainly driven by the hydrodynamic\p(t) and defining the twaeal spectral functions,
diffusive modes, and in the very hidhregion, where the IA

for the dynamics of the molecular centers of mass can be o
applied. Actually, in this latter case, the Gaussian approxima- A(w)ZJ’ dtcoq wt)K(t), (33
tion becomes rigorous, also for the liquid state, provided the 0
momentum distribution of a particle in the fluid(p), is "
Gaussian. This is generally the case, even for a quantum fluid B(w)=— f dtsin(wt)KS(1), (34)
[65], unless one is dealing either with liquftHe close to or 0
below the lambda transition, or with liquitHe atT<T;. _

In the case of liquid parahydrogen, Reichman and Rabanie obtain the following expression fo¥ (w), the Fourier
[66] used a self-consistent quantum mode-coupling theory teransform(FT) of W (t):
derive, in the framework of the Kubo formalism and of the
Gaussian approximation, a VACF for the dynamics of the — 1 A(w)
molecular centers of mass, which is claimed to be reliable. V()= p A2(w)+[w+B(w)]2
On the other hand, recent quantum mechanical dynamic @ @ @
simulations(MCD) by Kinugawa[32], still carried out for From the FT of Eq(31), using also Eq(26), we finally
the case of liquid parahydrogen, give also information on the, e at an expression fdf(w) and, from this, to a numeri-
same quantity, namely, the VACF. In this case, using g eyajuation ofl4(w) and Jo(w) [see Eqs(27) and fol-
Gaussian approximation, we were able to obtain, in a prég,ing]. These functions, in turn, can be used as input in Eq.
liminary work [62], a quite good agreement with the present 53 1o optain thereal and imaginary parts of the squared
experimental results dt=14.3 K(see Table)l Therefore in displacement functiory,(t). From these, making use of Egs.
what follows we will assume the Gaussian approximation 1,9) and following, we obtain a numerical evaluation of the

be valid and, through it, we will try to extract all possible S.o1(k(w),w). This quantity can be compared with the ex-
dynamic information from our experimental data on liquid perimental spectra.

parahydrogen megsured on TOSCA. In practice, we will In modeling the canonical memory functide®(t), we
compare the experimental spectra taken on TOSHDM pro- begin considering the pair dynamics only. This is sug-

cessed as explained befpie order to obtain the experimen-  gos4e4 by the relatively large values of the momentum trans-
taI.Sse”(k(w),w)z with a th_eorgt|cal model for the VACE, o 5ccessed by our experiment and, for the same reason, we
using the Gaussian approximation expressed byZ2). We 4, ot expect our results to be much sensitive to the mode-
stress that the reason for the following detailed quantltatlvecoupling component of the canonical memory function. As a
analy_sis is due to the good statistical accuracy of_ the presegfq; attempt, we used a simple Gaussian modelK6ft).
experimental spectra. However, we point out again that thesgy;q js 4 good representation of the pair contribution to the

are collected at constant scattering angle and therdfore memory function[2] and has been originally suggested by

changes W.ith.‘" . . . o .. Singwi and Tosi(ST) [67]. Thus we define a canonical
The basic ingredient of this comparison is in the deflmtlonmemOry function of the form

of the canonicalVACF according to the Kubo definitiofsee
Eq. (25]. Thus we define a normalizedime-symmetri¢ KS(t)=Q3exd — (t/70)?], (36)
function W (t) as

(35

where() is the Einstein frequency ang, is a binary colli-

us(t) sion time[2].
T(t)= o (30 A nonlinear fitting procedure was set up, using the math-
u*(0) ematical machinery described in Sec. lll, to obtain a VACF

and then, through the Gaussian approximatieee Sec. II
Using the results of the Kubo theory, it is easy to show thatand Ref[39]) to work out the self inelastic structure factor,
u¢(0)=(3kgT)/M and therefore, Sseii(k(w), ), along the TOSCA kinematic lingk(w),w) to
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TABLE II. Results of the fitting procedure of TOSCA experi-
mental data making use of the Singwi-T$6i7] model for the ca-
nonical memory function, including sample temperaftireeduced
chi-squared dat;zf, Einstein frequency),, Gaussian binary colli-
sion time 7y, and center-of-mass mean kinetic ene(gy,).

T (K) Xt Qo (meV) 19 (ps)  (En (K)

14.32) 6.27 8.019) 0.1205) 63.64)
15.72) 3.34 7.9%9) 0.1185) 63.54)
17.22) 3.56 7.819) 0.1155) 63.54)
19.22) 1.35 7.689) 0.1195) 63.44)
21.22) 0.656 7.409) 0.1296) 63.1(4)

S, (ko) (meV™)

) ) - -10'6'1I0.2I0'3I0.4Io'5|0
be compared with the experimental ones. The actual fitting o (meV)

procedure was implemented throughF@RTRAN code mak-

ing use of the MINUIT[68] standard minimizing routine. FIG. 6. Incoherent inelastic structure factBge(k,w) mea-

The spectrometer energy resolution was not included in thgured along the TOSCA kinematic lirteircles and its Singwi-Tosi

fit: experimentally estimatedA; w=0.43 meV) at the en- [67] best fit(solid line) for liquid parahydrogen at =14.3 K (a),

ergy transferio=14.4 meV from the solid parahydrogen andT=17.2 K(b).

measurementis5] was found totally negligible if compared - )

to the typical width of the features of the liquid sample spec_from the BBR fitting proqedure are also reported in Table I

tra. It is worth noticing that, after shifting the experimental for all the thermodynamic states.

data to get rid of the intramoleculde=0—J' =1 transition A careful inspection of the two lowest temperature mea-

contribution (see Sec. IV, the aforementioned value of the Surements T=14.3 K andT=15.7 K) revealed that the

energy resolution corresponded #iaw=0 energy transfer. dlsagreem'ent between experlmenFaI data on one side, and ST

Experimental data were fitted in the energy intert@hifted gnd BBR fits on the other, was mainly cpnflned in the energy

—10 meV <#%w<60 meV and three parameters were ob-iNterval—1 meV<f»<13 meV(see Fig. 7 fora zoom on

tained: an overall normalization consta@t,the Einstein fre- 1 —15.7 K data, where the ST and BBR fitting functions

quency,Q,, and the Gaussian binary collision time, Re- exhibited an almost constz_int curvature, not at all followed by_

ducedy? data and parameter estimates are reported in Tab@e'expenmental data. This suggested that some extra coqtrl—

Il for all the thermodynamic states. bution in theK®(t) was necessary. Thuslwe attemp;ed to fit
Using Egs.(16), (26), (27), and (31)—(35), the FORTRAN the two lowest tempe_rature spectra addl_ng a Io_ng-tlme com-

code was able to automatically evaluate ffie) andg(w) ponent to th_e canonical memory fu_nctlon. T_h|s long-time

spectral functions and, from the latter through Etp), the ~ (Mode-coupling part was modeled using a recipe suggested

center-of-mass mean kinetic enerdy,), which is also Y Levesque and VerlgfZ0] (LV) and we defined, accord-

listed in Table II. Examples of the quality of the present fitsI"9!Y: the following canonical memory function:

are reported in Figs.(8) and &b) for parahydrogen liquid Cren 2 2 4

samples afT=14.3 K, andT=19.2 K, respectively. The KEW) =Qoex = (t/7o)"] + Lt exp(—at).  (38)

agreement between experimental and simulated data is qui

good in the whole energy interval (10 me\<fw

<60 meV), even though, reducing the sample temperature

negative trend in the fit quality becomes clearly visitdee

also Table I): reducedy? grows and exceeds 1.5 for the

three lowest temp.eratures. In a second independent attempt, 1| E |11. Results of the fitting procedure of TOSCA experi-

we uged for the blnary component of thg canonical MEMONhental data making use of the Berne-Boon-Hig8] model for the

function an exponential model, according to a suggestioRanonical memory function, including sample temperafiiyae-

from Berne, Boon, and RicéBBR) [69]. Thus we defined  qguced chi-squared dag, Einstein frequency),, exponential bi-

S(perimental data &f=14.3 KandT=15.7 K, unsatisfac-
tory described by both ST and BBR modétee Tables Il
And I), were refitted using an LV canonical memory func-
tion in the energy interval(shifted —10 me\<fw

the following canonical memory function: nary collision time r;, and center-of-mass mean kinetic energy
(Eg)-
KS(t)=Q2 exp(—t/ 7). (37)

T (K) X Qo (meV) 1 (ps) (B (K)
Here the reduceg? turns out to be generally quite smaller 14.32) 2.88 8.8%4) 0.0992) 65.22)
than in the previous case but, again, the agreement between5.72) 1.55 8.764) 0.0992) 65.02)
fits and experimental data worsens as the temperature de417.22) 1.44 8.6%4) 0.0982) 64.92)
creases, as shown in Table Ill. New estimates of the Einstein19.22) 0.710 8.414) 0.1032) 64.72)
frequency,Q),, of the exponential binary collision time, 21.22) 0.502 8.0%4) 0.1163) 64.202)

and of the center-of-mass mean kinetic ene¢gy,, derived
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0.026 1 J— by Silvera and Goldmah71] (SG), still considered one of
0.024 the most reliable for para-Hin low-temperature condensed
. ) phaseq72]. However, in order to test the effect of the po-
0-022 7 ) tential on the simulated physical quantitiésamely, (E,)
0.020 and ();), one calculation (at T=15.7 K and n
0615 ] =22.52 nm3) was also performed using the more recent

semiempirical isotropic pair potential derived by Norman,

S,y (k@) (meV’)

0.016 ” Watts, and BucKk73] (NWB). The main difference between
0.014.] the two is the presence in SG of a small repulsive term,
4 Co/r°, which approximately takes into account the effect of
0.0124 F the irreducible three-body interaction in the condensed
0.010 12 - < < phases. Generally, the PIMC algorithm was operated at one
0 2 4 6 8 10 12 value,P= 64, of theTrotter numbey usingN=500 classical
o (meV) particles[74]. However, afT=15.7 K andn=22.52 nm3

a calculation usind®=81 was also accomplished. Only tiny
differences in the values ¢&,) and(},, always smaller than
1%, were observed, both between e 64 andP=381 re-
sults, and between SG and NWB ones. This check confirms
that (a) the choice of the Trotter numbd?=64, is large
enough to take into account correctly the quantum nature of
) ] the simulated systems aiflo) the fine details of the potential
<60 meV. Five parameters were obtained for each data seffo not play a crucial role in the evaluation of the two physi-
an overall normalization constarg, the Einstein frequency, ¢ quantities of interest here. The PIMC code, already suc-
Qg, the Gaussian bmary collision timey, the long-time cessfully employed for solid and liquid ,;Hand liquid D
constantl, and the long-time exponential decay,Reduced  [55 75 74 makes use of the so-calledudeestimator of the

x* values, LV fitting parameters and nefi,) estimates are  center-of-mass mean kinetic enef@2], while the Einstein
reported in Table IV for the two low-temperature thermody-frequency is evaluated, in the framework of isotropic pair
namic states. It is evident that the redug€dnow tums out  interactions, through the quantum pair correlation function of
to be much smaller than in the previous cafsee Tables Il the molecular centers of magg,5], g(r),

and lll), but the LV fitting curve does not appear to be very

sensitive toL and «, their uncertainties being quite large. An

example of the good quality of the LV fits is reported in Fig. 9(2):
7 forT=15.7 K data. However, the values of the parameters 372M
Qg and 7 remain intermediate between the two previous

(binary) cases. Therefore in the following we will limit the . ) . ) . )
discussion to the pure binary models. HereV(r) is the intermolecular isotropic pair potential. Spe-

cial care was taken in order to evaluate, and to correct for,
the finite-size effects of), caused by the cutoff of thg(r)
V. DISCUSSION AND CONCLUSIONS around r=14 A. Details on the implementation of the
PIMC code can be found in Reff74], while the results for
(Ey) and Q) are reported in Table V.

FIG. 7. Zoom on the incoherent inelastic structure factor
Ssei1(k, @) measured along the TOSCA kinematic lifércles with
error bars, its Singwi-Tosi[67] best fit (dashed ling and its
Levesque-Verlef70] best fit (full line) for liquid parahydrogen at
T=15.7 K.

n

deg(r)v2V(r). (39)

The understanding of the fitting results reported in Table
I, I, and 1V can be improved through a path integral Monte
Carlo code, simulating the parazldamples in the same ther- 1A E v. Estimates of the center-of-mass mean kinetic energy
modynamic conditions of the TOSCA experimental Measure(E,) and of the Einstein frequendy, obtained from quantum me-
ments(see Table )l These simulations were mainly carried chanical simulation procedurésamely, PIMC; see main textThe
out using the semiempirical isotropic pair potential derivedupper part of the table refers to the thermodynamic conditions of

the experimental data. The lower part reports the PIMC results for

TABLE IV. Results of the fitting procedure of the two lowest- the thermodynamic conditions of the parahydrogen simulations by
temperature TOSCA experimental data making use of theReichman and Rabani, and Kinugawa, respectiy6;32.
Levesque-Verle{70] model for the canonical memory function,
including sample temperaturel, reduced chi-squared data T(K) n(nm~3) (Ep) (K) Qy (meV)
sz, Einstein frequency),, Gaussian binary collision time,, long-

time constant, long-time decayx, and the center-of-mass mean 14.3 22.91 61.4) 9.141)
17.2 22.10 61.Q) 8.902)

Qp To L a (Ey) 19.2 21.50 61.6) 8.752)

T (K) X2 (meV) (ps) (meV®)  (meV) (K) 212 20.83 62.) 8.552)
14.32) 1.114 8.288) 0.0994) 5(2)x10° 7.06) 64.33) 14.0 23.50 63.0) 9.371)
15.72) 0.853 8.168) 0.0984) 7(2)x10° 7.46) 64.23) 14.7 24.18 66.8) 9.80(1)
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6.0 (@) netic energy, is dominated almost exclusively by the density

{ B B of the liquid. However, the relative discrepancy among the

c 59 B 3 three different estimates is substantially larger than before:
~ 630_' % E } ‘}_\{ 6.6% between ST and BBR, 10.4% between ST and PIMC,
wo ] and 3.8% between BBR and PIMC. These three sets of fig-
Vo 615 kT * ures are clearly impossible to be reconciled among one an-

61.5- &-~o--- B a-emmmmmT = : Ssl
: other, given the statistical accuragglways smaller than

60.0 m—t——r~——t—t 1 1.1%, see also Tables I, lll, and)VHowever, we should
also note that the typical experimental method to evaluate

— 07 0o, making use of the measured pair correlation function in
2 857 conjunction with Eq.(39), usually provides values with a
E 3o comparable accuratene&sround 10-12% in the case of
c liquid *He [76].
o The third physical quantity evaluated through the fitting
7.0 procedure, namely, the binary collision timesg, (from ST)
0.13 4 and , (from BBR), cannot be easily obtained from an equi-
- 1 librium simulations like PIMC. Actually some approximate
a 0121 expressions exi§®] but they appear justified only in a clas-
S 0117 sical framework, rather inappropriate in our case. For this
010 S 5 g reason, we decidec_i to report in the ﬁgure only the fi_t results
Y g (c) from the two canonical memory function models in Fi¢c)8
09 +——TFT——F"T T T T The two sets of datagy, and 7;, show a similar trend even
14 15 16 17 18 19 20 21 22 though they exhibit an overall discrepancy of the order of
T(K) 9%. This figure looks quite large but we should also observe

that the two physical quantities are not equivalent. In fact,

FIG. 8. Physical quantities estimated by fitting TOSCA experi- both 7 represent the value dfat which K(t)/KE(0)= 1/e,

mental measurementsee Table )l making use of a Singwi-Tosi but the sh £th ical f . .
[see Eq.(36)] model for the canonical memory functiofiull ut the shape of the two canonical memory functions Is very

squaresof a Berne-Boon-Ricgsee Eq(37)] model for the canoni- different, and so are the properties of the VACF they gener-
cal memory functior{open circles Numerical values are reported at€. For éxample, the fourth moment of thiw) obtained
in Tables Il and Ill, respectively. Results from PIMC simulations through the BBR approach is infinite, i.e., physically incor-
(see also Table Ware shown as full triangles. Lines are data splinesfe€ct.
and are meant to be eye guides. Physical quantities stangfor While the comparison at the level of the translational
center-of-mass mean kinetic energl,); (b) Einstein frequency ~mean kinetic energy is quantitatively satisfactory and that for
Q; (c) Gaussian binary collision time, i.ery for the Singwi-Tosi  the Einstein frequency is still acceptable, the same picture
model, and exponential binary collision timg for the Berne- does not hold for more involved dynamic quantities. For ex-
Boon-Rice one. ample, it is interesting to compare the spectral funcfign),
which is obtained from the present fitting procedures, and
A comparison between the experimental estimates of th&wo independent theoretical derivations of the same quantity.
translational mean kinetic ener@iyoth via ST and BBRand  The first is obtained from a MCD quantum mechanical dy-
the PIMC results is visible in Fig.(8). The two sets of fited namic simulatior{32], and the second from a QMC calcula-
data follow a similar trend, but keep an almost constant offtion [66]. The simulated spectral functioi$w) have been
set of 1-1.5 K, corresponding to a relative discrepancy oflerived from the published spectral functiof&w) as ex-
about 1.5%. This discrepancy is larger than the respectivplained in Sec. Il and then properly normalized. The com-
statistical uncertainties, but the comparison with the typicaparison at the level ofE,) andQ) is easily obtained relating
relative accuracy of the results from the deep inelastic neuthe results in Tables Il and Ill with the same quantities re-
tron scattering techniqu5,75, i.e., 2—5 %, is quite satis- ported in Table V, and shows a fair agreement. However,
factory. The present results look promising even thoughwhen the same comparison is extended to the spectral func-
PIMC data are included: although the fitting data cannot retion f(w), substantial differences become apparent. This is
produce the slight peculiar trend of the simulated digegen  shown in Fig. %a). In the following we will discuss more
by the competition between decreasing density and growingccurately about the aforementioned quantities, starting from
temperature along the SVP line, e.g., in TableRIMC esti-  (E,) andQ,.

mates of(E,) lie close to the two sets of fitted dat8T and The fit results and their PIMC simulations have been al-
BBR), with a relative discrepancy of the order of 2.1% andready discussed in this section and are reported in Tables
3.6%, respectively. Il, l, and V. For MCD and QMC, from the appropriate

As far as the Einstein frequency is concerned, the experif(w) spectral moments, one obtaiq&,)=64.8 K, Qg
mental estimatesboth from ST and BBR modelsand the =8.35 meV, andE,)=63.8 K, ,=9.34 meV, respec-
PIMC results are compared in Fig(. Here, the three sets tively, while our PIMC results for their corresponding
of data exhibit a similar decreasing trend, which shows thathermodynamic conditions are in the same order:
the Einstein frequency, unlike the center-of-mass mean kiE,)=66.8(1) K, 0,=9.80(1) meV, and (Ey)
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0154 =0.0441 ps for QMC andy=0.0928 ps for MCD. The dis-
1 \ (a) crepancy among MCD, QMC, and fitted values of the binary
0129+ collision time[ 7,=0.120(5) ps af =14.3 K using the ST

model memory functiohis in this case quite large: the ST
estimate ofry is almost three times larger than the QMC
value and the MCDr is, in turn, more than twice larger than
the QMC one. Transformed from energy into time domain,
this means that what is not equally described should be the
intermediate- and long-time velocity autocorrelation function
behavior. Actually the infinite-time limit of the self-dynamics
[epitomized by the self-diffusion coefficien)] seems al-
most satisfactorily reproduced in Fig(& by all the spectral
functions[ D being proportional tof (w=0)], so we might
infer that is the intermediate-time behavior of the VACF to
be still lacking precision, from the experimental, the analyti-
cal, and the simulation points of view. By hindsight, it is not
entirely surprising that the moments predicted by QMC are
reasonable because these moments are used as the input for
mode-coupling calculations. The original mode-coupling
idea was introducefi77] to interpret long-time tails but did
not quantitatively reproduce the intermediate regime of
VACF [2]. For the same reason, QMC results also may ex-
hibits problems in the intermediate regime of the correlation
g y T T T T function. In contrast, MCD results should be more reliable in
10 0 10 20 30 40 50 60 this regime.

 (meV) An alternative explanation is the possible failure, in our
(k,w) range, of the Gaussian approximatiaefined in Eq.
(22)], which is used both in the experimental data analysis

at T=14.7 K (solid line), from the quantum mode-coupliige] ~ @nd in the QMC approacf66], but not by MCD. However,
approach al'=14.0 K (dashed ling from a Singwi-Tos{see Eq. ~ Since this approximation is applied in rather different ways
(36)] fit of the experimental data a&=14.3 K (dotted ling, and  (as a fit in the present work, iteratively by QNiGitted and
from a Berne-Boon-Ricdsee Eq.(36)] fit of the same data set QMC results could diverge towards different and unpredict-
(dotted-dashed line(b) Incoherent inelastic structure factor of lig- able directions: this fact would be sufficient to explain why
uid p-H, calculated along the TOSCA kinematic path and derivedthe three methods, namely, experimental, QMC, and MCD,
from the two simulated spectral functiofibw) shown in panela) exhibit the aforementioned discrepancies. Of course, this
(namely, MCD, full line, and QMC, dashed lineogether with the  makes very important a precise check of the validity of the
experimental data at=14.3 K (circles. Gaussian approximation and its range of applicability.

The comparison between QMC and MCD simulations re-
=63.2(1) K, Q,=9.37(1) meV(see also Table )/ Itis  sults, coupled with the Gaussian approximation of £%)
worth noting that despite the lack of information about simu-to obtain S 1(k(w),w), and experimental data aT
lated data statistical precision, the agreement on the center=14.3 Kis finally summarized in Fig.(B). It is evident that
of-mass mean kinetic energy between PIMC and dynamithe MCD self inelastic structure factéreducedy?=5.565)
calculations looks reasonably good for both MCD and QMC,is much more similar to TOSCA data than the QMC one
while the PIMC value of the Einstein frequency is better (reducedy?=90.78), despite the thermodynamic conditions
reproduced by QMC than by MCD. This fact, which re- of the latter being closer to the experimental density and
sembles the behavior of the fitted values(df in Tables Il temperaturésee Table V. Since the Gaussian approximation
and Ill, is not totally surprising since the QMC method has been used in the QMC case not only by us to produce
makes extensive use of the results of equilibrium PIMCS,,«(k(w),w) from f(w), but also, in a self-consistent way,
simulations [43,6€], performed, by the way, through the to obtain the QMCf(w) itself, we have to conclude that
same isotropic pair potentigf 1] we used in ours. On the QMC results are impossible to be reconciled with our experi-
other hand, the skewness and the peakness of the four curverental findingdi.e., our S i(k(w),w)]. However, we still
appear immediately all different. In this respect, it is verycannot decide, provided our experimental data are faultless,
useful to compare the values of binary collision time, whichwhether this problem is caused by the failure of the Gaussian

FIG. 9. (8) Comparison among liquigh-H, spectral functions
f(w) obtained from a molecular centroid dynamics simulafid?|

is connected to the fourth moment ffw) by [5] approximation or by some other assumptions in the QMC
routines used. On the contrary, MCD did not make use of
+oo ; ; ; ;
4 — 0202 -2 this approximation to work out it§(w).
f_oc " f(@)do=06(Qo+27 7). (40 In conclusion, in the present study we have recorded the

incoherent inelastic neutron cross section of liquid and solid
From the two dynamic simulations we obtaini,  parahydrogen in various thermodynamic conditions using the
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neutron spectrometer TOSCA. The measured cross sectidfinstein frequency can be experimentally evaluated using
provided direct experimental access to the incoherent part dhis fitting procedure with a similaior even betterlevel of

the inelastic structure factor for the centers of mass of th@ccuracy than what is normally achieved by more usual ex-
H, molecules in the system under observation. Measuregerimental techniques. However, the analysis of the binary
data have been corrected for the experimental effects ancbllision time and a careful review of the experimental and
then processed in the framework of the Young-Koppel modesimulated energy spectra of the velocity autocorrelation
in order to remove the contributions coming from the in-function showed that large inconsistencies still exist both be-
tramolecular(rotovibrationa] dynamics. The Gaussian ap- tween experimental and simulated data and between simu-
proximation has been then assumed, aiming to relate the ifated data from the two different approaches. Summarizing,
coherent scattering law of the liquid samples to the energyve conclude that further development of theoretical and
spectrum of their velocity autocorrelation functions. Thesesimulation approaches, as well as more extensive experimen-
correlation functions have been subsequently obtained frortal efforts, are necessary. In addition, a comprehensive check
a fitting procedure, making use of the quantum generalizedf the validity of the Gaussian approximation in liquig i$
Langevin equation and two model memory functions,also highly needed.

namely, with a Gaussian and an exponential time decay. The
fitted energy spectra of the velocity autocorrelation function
have been also compared to the most recent results of both
centroid molecular dynamics and self-consistent quantum The superb technical assistance of the ISIS Instrument
mode-coupling theory. Three moments of the energy spedivision (Rutherford Appleton Laboratory, Chilton, Didcot,
trum of the velocity autocorrelation function were related toUK) is gratefully acknowledged. The authors are greatly in-
important physical quantitie@iamely, center-of-mass mean debted to Dr. U. BafilgCNR-IFAC, Firenze, Italy for in-
kinetic energy, Einstein frequency, and binary collision time valuable comments on the present work. One of the authors
and the first two were also simulated through a standardD.C)) is also indebted to Dr. S. F. Parker and Dr. J. Tomkin-
(equilibrium) path integral Monte Carlo code. The results of son(ISIS, Rutherford Appleton Laboratory, Chilton, Didcot,
this comparison came out very interesting and, for examplelJK) for the encouragement and many useful and stimulating
showed that the center-of-mass mean kinetic energy and ttdiscussions on the subject of this paper.
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